
A Model of Computation for Source Code Analysis and Transformations 1

A Model of Computation for Source Code
Analysis and Transformations

Sergio Pissanetzky, Research Scientist. Member, IEEE.

Abstract – Detailed information needed by algorithms that operate on source code is hidden in the
code and hard to find. To support the algorithms, various ad hoc code models have been proposed, but
the resulting tools are still limited and have language dependencies and poor interoperability. Some
contain bugs, perhaps a consequence of the difficulty in developing a tool and a model simultaneously.
To address the problem, we propose the Relational Model of Computation (RMC). The RMC consists
of two sparse matrices, each representing a set of relations where each tuple is in turn an RMC sub-
model of finer granularity. The model is a virtual machine, a relational database, and a container for
code at the same time. The concept originated in mathematical notation. The RMC is strongly typed
and can model OO entities and concepts such as user types, subtypes, single and multiple inheritance
for types and behavior, classes of objects, methods, and overloading and overriding. Polymorphism
can be described as conditional logic in one of the matrices. Using the hierarchy of submodels, the
RMC can model program entities at any detail, including UML designs, functions, three-address code,
statements, tokens, even architecture or machine instructions should the need arise. Partial models
are possible for local algorithms such as refactoring. In this paper, we formally define the RMC, prove
its Turing completeness, discuss its modeling capabilities and possible applications, and illustrate the
mechanics of modeling and analysis with examples.

Index Terms – Virtual machines, program representation and analysis, coding tools and techniques,
object-oriented design, software maintenance and evolution, refactoring.

1 Introduction

Algorithms that transform or analyze source code treat code as data and attempt to modify or measure
its structure. One of the main problems with such algorithms is that details they need are hidden in the
code, particularly if it is object-oriented (OO). In response, many algorithms define their own ad hoc
representations of the code, a practice that may limit their interoperability and range of applications,
and force language dependencies. The code itself remains the only common feature shared by the
algorithms.

To address this issue, a container for code is needed. A container is an implementation of a standard
structure, such as a graph or a database, that supports algorithms designed for that structure, provides
common ground, and allows the algorithms to work efficiently and interoperate [1]. The container
should be based on a model of enough generality. A model is an abstraction, a regular representation
of a complex system where irrelevant details are excluded but important details are easily accessible.
A model constitutes a mapping from our viewpoints or perceptions of the world – such as a business,
for example – to some formal entities that represent the viewpoints and allow us to proceed on formal
grounds. A relational database, for example, is based on the relational model of data [2].

The use of a container is unavoidable. If developers working on some business problem fail to
use a standard container and try to write their own code, they immediately write the code for that
container. Programs can be found with several different implementations of the same standard graph
structure, or list structure, intercalated with the user code, and none of them fully functional. A
similar situation happens with code. Code is data used by the computer to decide what to execute. If
the structure of code is extracted, then algorithms can be designed that use the structure to operate
in a code-independent manner. The lack of a container for code can influence the development of
programming languages and transformation tools.

2 Sergio Pissanetzky

The concept of a container for code can not be explained without a reference to the concept of
structure. Structure arises naturally when regularities are found in an otherwise disorganized set of
data. Structure identifies elements present in the data, reveals their relationships, reduces the overall
complexity, and makes the data more manageable and understandable. A nested hierarchy of structures
arises because an extracted regularity is in turn data, and thus itself amenable to a further extraction
of regularities. Since a level of structure encompasses, hopefully, many cases of data, higher levels
become progressively more and more general. In computation, structure is used by the algorithms
that operate on the data in a data-independent manner. OO developers are very familiar with the
concept. For example, algorithms that operate on lists or queues assume that data is organized as lists
or queues.

The concept of creating structure by extracting regularities is a tenet in the theory of complex
systems. A program is a complex system. Software development is a good example for the extraction
of regularities and the emergence of structural hierarchies, and OO languages, UML diagrams and
control flow graphs are examples of tools that help in the process.

But languages, graphs or diagrams are not containers.

We present here the Relational Model of Computation (RMC), and prove that it is a Turing-
equivalent virtual machine. Thus, the RMC can emulate any executable algorithm. The model contains
a structure of types and embraces the concept of regularization via submodelling, a mechanism that
closely emulates the nested hierarchical behavior of structure. Typing and submodelling allow the
RMC to represent code at any adjustable level of detail, from three-address code to OO code to class
diagrams, including machine instructions should the need arise, and even mix them all together for
better interoperability. As a result, algorithms have complete control over granularity, the level of
detail that they need to be aware of, and the ability to hide fine-grained details that need to stay out
of the way. The ability to emulate general algorithms, the ability to represent structural hierarchies,
the ability to control granularity, the commonality and interoperability attained for many different
code representations, qualify the model as a container for code

Logically, the RMC is a relational database represented as a 2-tuple of sparse matrices. The model
is simple and easy to comprehend. It is not human-readable, but it is very visual for small examples.
This helps with algorithm design, and for presentations and publications such as this one. The RMC
is inspired on mathematical notation.

Mathematical notation is mature and precise. For centuries, mathematicians have been writing
equations, condensing properties and behavior into objects, restructuring their equations to make them
more meaningful and easier to manipulate, using patterns, dealing with complexity, and perfecting
a notation that would allow them to express all that. For example, a symmetric positive definite
matrix A is an object, and its factorization A = LU into the product of a lower triangular matrix
L and an upper triangular matrix U, is a pattern, frequently used when solving large systems of
linear equations. Mathematical notation consists of equations interspersed with textual descriptions
of conditional logic that specify the cases where the equations apply and the sequences in which
they should be “executed”. The notation can be viewed as a language intended for mathematicians.
Mathematical notation can describe any algorithm, and, in a sense, it is “Turing-complete”. We seek
to inherit this property. Powerful transformations, such as the symbolic rationalization of expressions,
factorization, symmetrization, or simplification, are common in computer algebra systems [3, 4], and
automated bug-free tools are available, including an open framework for symbolic computation within
C++ [5]. Links between code transformations and algebraic transformations have been established in
the literature [6, 7]. It is only fit that we continue to draw from all that experience.

Fortran, the first major computer language, was created as a formula translating system, with
statements that formalize conditional logic, cases and sequences, or deal with the subscripts used in

A Model of Computation for Source Code Analysis and Transformations 3

matrices and tensors, and variables and operators that represent the equations themselves. Concepts
and notations from Fortran were adopted by C, Basic and Pascal, and later by modern OO languages
such as C++ and Java. Restructuring code has been practiced even in the early days of Fortran, but,
not surprisingly, it intensified and was recognized as the separate discipline of refactoring only after the
introduction of objects. The structural elements and concepts from mathematical notation, combined
in ingenious and meaningful ways, are still found in OO languages.

It is important to point out the differences between our approach and Structured Programming [8].
Structured programming also organizes program structures into hierarchies, but that is a property of
structure in general. Structured programming is not a container, a database, or a matrix, as we will
show the RMC to be. It is a model of programming, but not of computation. And we have no quarrel
with the go to statement.

1.1 Related Work. Refactoring

We have separated the related work into the areas of refactoring and virtual machines. Virtual machines
are included because the RMC is a virtual machine. Refactoring is representative of analysis and
transformations. The RMC is more general than that, but in this paper we restrict our attention to
transformations, particularly refactoring because of our interest and because research on refactoring is
very active. The following brief survey is partial and intended only as support for arguments used in
this paper. To simplify presentation, work is separated into several broad categories.

Refactoring has been recognized as an activity crucial for evolutionary-development processes
[9, 10], and the need to teach refactoring in Computer Science curricula has been recognized [11].
Refactoring was originally defined by W. Opdyke as a behavior-preserving program restructuring op-
eration that supports the design, evolution and reuse of OO applications [12]. A catalog of elementary
refactorings listing more than 70 operations was published by Martin Fowler [13], and a survey of
software refactoring was presented [14].

Many methods support manual operations such as finding segments of code that need improvement
or deciding which refactorings to apply. In this group, we should mention the application of design
patterns to automate refactoring in Java [15], the feature decomposition of programs, where a feature
is an increment in program functionality [6], and the detection of program invariants [16].

Methods intended for automation are usually based on some representation of the program other
than source code. A graph representation was introduced and graph transformation and rewriting
techniques were formalized and used to analyze dependencies in refactoring [17, 18]. A language
for refactoring that manipulates a graph representation of the program was proposed [19]. Some
approaches advocate automation only at the design level of granularity, where tools are easier to
develop, leaving details to the developers. Reducing developer intervention reduces cost. One such
approach [20] defines a space of alternative designs generated by repeated applications of a refactoring
tool, and evaluates them using a design quality function chosen as a combination of multiple metric
values such as the CK suite discussed below. The span of the space is obviously limited by the ability
of the tool to generate the designs. The application is Java-specific, and falls within the discipline of
Search-Based Software Engineering (SBSE).

The use of code metrics is commanding attention. Metrics must satisfy certain mathematical
properties in order to be meaningful. The CK metrics suite [21, 22] proposed for OO design is seminal
work. It uses 6 different code measurements, such as cohesion and coupling, and is theoretically based
on the ontology of Mario Bunge. Other methods use distance cohesion metrics to associate methods
and variables of a class [23], a combination of code metrics and visualization [24], and OO metrics for
bad smell detection [23]. Mens et al. [14] suggest that refactorings can be classified according to the
code quality attributes they affect, such as robustness, extensibility, reusability, or performance, and
in terms of attributes such as code size, complexity, coupling and cohesion, which can be measured

4 Sergio Pissanetzky

if access to program structure information is available. Performance can be improved by replacing
conditional logic with polymorphism [25].

There has been work on more specialized refactoring systems such as architectural refactoring of
inherited software, particularly corporate software [26] and clustering techniques for architecture re-
covery [27]. And in aspect-oriented programming, using program slicing to improve method and aspect
extraction [28], role-based refactoring [29], role mapping [30], and aspect refactoring [31]. Refactoring
of non-OO code has also been considered [32]. Code refactoring has been linked to algebraic factoring
[6], and, in the particular case of user interface design, to matrix algebra [7].

A clone arises when developers copy and paste fragments of code with the purpose of duplicating
functionality. Clones are found even in large packages [33, 34] and sophisticated code such as STL [35].
Their presence complicates maintenance and their detection and removal produces more structured
code [36]. Clones can be detected by a tool that matches code fragments, but the refactoring actions
may be risky [37] and should be decided by developers based on clone differences. One approach [38]
uses a comparison algorithm to align tokens and attempts to make the differences more meaningful by
interpreting them in terms of programming language entities. Metrics have been used to automatically
characterize clones [39]. A proposed method [36] uses Abstract Syntax Trees (AST) to detect exact
and near miss clones and removes them by producing in-lined procedures or preprocessor macros in C
programs. Another approach [40] proposes a token-by-token comparison and a tool that can extract
clones in C, C++, Java, COBOL, and others. Another method uses similar subgraphs in program
dependence graphs to find similar code [41], and considers not only the syntactic structure but also the
data flow. A lightweight approach based on simple string-matching was proposed [42]. We note that
the multiple container implementations we mentioned above are not clones and can not be detected by
matching algorithms. Developers often don’t realize they are duplicating a container and tend to write
fragments of container code where calls to a standard container interface should have been placed.

Pre-processed languages such as C and C++ present special challenges, but not all problems intro-
duced by preprocessing in large OO applications can be handled [43]. Preprocessors were considered
from an abstract point of view [44]. In the case of C, enhancements to analysis and refactoring tools
[32] are needed to handle preprocessor directives. A toolchest named CScout based on token equiva-
lence classes in C and C++ was proposed [45]. That publication also proposes a relational database
with the source code’s semantic information that isolates the analysis engine from refactoring transfor-
mations. The replacement macro language Astec [46] that can handle preprocessor directives naturally
was proposed for refactoring and analysis of C code.

The use of language-based methods to support program evolution has been proposed. Ward and
Bennett [47] suggested using the formal intermediate language WSL for evolving legacy code by means
of semantic-preserving transformations. The code is translated into WSL, transformations are per-
formed, and the result is translated back into the same or a different language. One problem is that
translations can not be formally proved to be correct ([14]). However, such translations are common-
place nowadays for languages such as Java and C#. The macro language Astec was proposed [46] for
C programs.

Case studies on refactoring are rare in the literature. A recent Eclipse case study [9] has concluded
that even state-of-the-art IDEs such as Eclipse support only a subset of low-level refactorings but lack
support for more complex ones, which are also frequent. The study also draws conclusions on high-level
design requirements for a refactoring-based development environment. One study [19] notices that
existing tools are language-specific and contain significant bugs, even in sophisticated development
environments, and proposes a scripting language. Another study reports possible errors [15]. Yet
another case study [10] is concerned with designing software repository mining methods for examining
the refactoring practice, and with ways for developing insights into the history of the refactorings
actually applied by developers. Case studies involving clones have been conducted [40] with JDK,
FreeBSD, NetBSD, Linux, and others.

A Model of Computation for Source Code Analysis and Transformations 5

This brief survey shows a disproportion between the considerable research investment and the
achievements, and lack of commonality between the tools. Refactoring remains a complex and risky
procedure. Many tools are insufficiently generalized, dependent on implementation technology, use ad
hoc models, and can not interoperate. The goal is uncertain. Will it satisfy the users? Will there
be a tool capable of converting multiple implementations of the graph container to STL containers?
No tool can be better than the software model it relies upon. It is difficult to write a tool and at
the same time develop an ad hoc model for it. This survey has mentioned the following different
models: various types of graphs (AST, CFG, program dependence, for rewriting, for iso-structural
subgraph detection), token-parsed code (for token-to-token comparison), token equivalence classes (for
preprocessed languages), string-parsed code (for string matching), and various languages and scripts.
The RMC proposed in this paper can serve as a container for code and provide commonality for the
tools. Existing tools can be ported to the RMC. In Section 4.3 we suggest one way to do it.

1.2 Related Work. Virtual Machines

A virtual machine (VM) [48] is an implementation of an abstract machine such as the Turing machine.
An essential feature of all VMs is their ability to emulate a Turing machine, or a finite automaton. VMs
provide an interface between programs and operating systems and support program transformations
at the intermediate representation level for compiler optimization and performance improvement. A
number of VMs have been developed. These include the well-known Java VM for Java, the Common
Language Runtime for C#, VB, J# and managed C++, the P-Code VM for Pascal, the Warren VM
for Prolog, and the Squeak VM for Smalltalk. The TrueType VM supports the rendering of TrueType
fonts and the Sqlite VM supports the operation codes of the Sqlite database system. The Low Level
VM (LLVM) was designed for the compile-time and run-time language-independent optimization of
programs.

A few VMs serve other purposes. Π-calculus [49], a mathematical formalism used for the analysis
of concurrent computation such as communicating systems where the configuration changes with time,
is Turing complete [50] and therefore a VM. Spi-calculus [51] is an extension of π-calculus for security
applications. VMs are also used in some forms of Abstract Interpretation, a formal mathematical
method for static software analysis. To our knowledge, a VM intended for source code transformations
has not been defined. Therefore, the impact of VMs on development and code evolution has been
limited.

1.3 Organization of this paper

Section 2 introduces the Relational Model of Computation (RMC) as a 2-tuple of matrix representations
of sets of relations. It explains how relations are represented as matrices, proposes two conversion
algorithms, defines service, sequence, and the matrices of services and sequences, and gives the process
algorithm for the RMC. Turing equivalence is proved in Section 3. The proof is by construction. A
model of the Turing machine is defined, and then proved to emulate the machine. Section 4 examines
important properties such as submodelling, commutativity of sequences and conditionals, and OO
features, relationships with other models, possible applications, and a suggestion for an interface for
tool support. Finally, Section 5 presents examples to illustrate the mechanics of the model.

2 The Relational Model

The relational model (RMC) describes the structure of a program in terms of relations. In the context
of this paper, the model serves as a container for source code and supports algorithms that work with
it. The formal definition of the RMC is covered in this section. The C expression

6 Sergio Pissanetzky

a = b - c; (a)

is a description of the structure of a function, the table of subtraction, not the function itself. In words:
“a is the codomain, b and c are the arguments, in that order, ‘-’ is the operator, and ‘(a)’ is the name.”
The quoted statement describes a tuple in a relation of degree 5. The C statement

a = a + 1; (b)

describes the structure of a mutator, where “a is the codomain and first argument, ‘1’ is a literal, ‘+’ is
the operator, and ‘(b)’ is the name.” This quoted statement describes a tuple in a relation of degree 4.
In both cases, the tuples describe the role played by the variables in the expression. A code fragment
such as:

if(b)a = 1; else a = 2; (c)

would require two tuples in a relation where one of the domains is the domain of values of the control
variable b, not its role. In the RMC, expressions such as (a) or (b) become services, while conditional
logic such as (c) becomes a sequence. The Relational Model is formally defined as a 2-tuple:

M = (Q, C) (1)

where Q is the matrix of sequences, and C is the matrix of services. Each matrix represents a set of
relations. In general, both matrices are sparse1, and the relations have different degrees.

Execution in the RMC proceeds by executing the services in a certain sequence. After execution of a
service, logic is invoked to determine what service to jump to, either conditionally or unconditionally.
Conditional jumps depend on the values of certain control variables. The services are represented
in matrix C, and the logic in matrix Q. Thus, execution alternates between the two matrices. Since
services and logic are described by relations, execution is equivalent to a search operation in a relational
database.

To explain the model, we must explain how a matrix can represent a set of relations, define what
is a service and what is a sequence, define a relational representation for both, and give an algorithm
for the search. This is the subject of the present section.

To validate the model and qualify it as a virtual machine, we must prove that it can support
algorithms by proving its equivalence with the Turing machine. This is covered in Section 3.

To explain the purpose of the model and illustrate its usefulness, we must explain its features and
present some examples, which we do in Sections 4 and 5.

A note on notation. Modern relational theory [53] establishes a difference between the definition
of domain or type and the definition of set: a domain is a set with a name. In this presentation, we
do not use domain names. Instead, we identify domains by the symbol we use to refer to them, or
by a primary key such as an ordinal number, and we use all three terms “set”, “domain” and “type”
interchangeably, but in context. We also equate sub-type with subset, particularly in the context of
type inheritance, but we do not use the terms “subclass” or “superclass.” We also use the classic
definition of the term “relation” [2]: given n sets S1, S2, . . . , Sn, not necessarily distinct, a relation on
these n sets is a set of n-tuples each of which has its first element from S1, its second element from S2,
and so on. Si is said to be the i-th domain of the relation, and n is its degree. Typically, the relation
also has a name and a heading with the names of the domains.

2.1 Representing relations in matrix form

The RMC uses relations to represent and transform data structures, such as the structure of source
code, program designs, and other entities. A matrix representation of the set of relations helps to

1For a background in sparse matrices see [52]

A Model of Computation for Source Code Analysis and Transformations 7

visualize and comprehend the structure and the transformations. To define the representation, we
assume that the given relations are all different (for example, they can have different names), the
tuples are all different (for example, they have a unique primary key, or contain foreign keys into a list
of relation names), and the domains participating in any given relation are all different. However, a
domain is allowed to participate in more than one relation. Let R be the set of the n given relations,
irrespective of degree:

R = {r | r is a given relation} n = | R |. (2)

For each r ∈ R consider the set Tr of its tuples:

Tr = {t | t is a tuple in r}
Tr ∩ Ts = ∅ if s 6= r,

(3)

the set Dr of its domains:

Dr = {d | d is a domain in r}
Dr ∩Ds may be 6= ∅

(4)

and define the set T of all tuples, the set D of all domains, and their respective cardinalities:

T =
⋃

r∈R Tr, k = |T | =
∑

r∈R |Tr|
D =

⋃
r∈R Dr, m = |D| ≤

∑
r∈R |Dr|

(5)

The matrix H representing R is of dimension k ×m. There is a one-one mapping between rows and
tuples in T , and between columns and domains in D. Since T is partitioned by relation, a partitioning
by relation is also induced in the set of rows. However, since the mapping between D and R is many-
many, the mapping between the set of columns and R is also many-many. The following algorithm
determines the elements of matrix H:

Algorithm 1. Convert relations to matrix.
Step 1.1 For each r ∈ R, t ∈ Tr, d ∈ Dr, determine the value vrtd of the corresponding element of r.
Step 1.2 Using the mappings T → row and D → column determine the row i corresponding to t and

the column j corresponding to d.
Step 1.3 Set Hij = vrtd.
The elements not determined by the algorithm are set to null or left blank. Typically the matrix is
sparse because only a few elements per row are non-null. Some examples of conversion are presented
in Section 2.3, and additional examples can be found in Section 5. The following algorithm determines
R from a given matrix H:

Algorithm 2. Convert matrix to relations.
Step 2.1 For each row i in H, use the mapping row → T to determine the corresponding tuple t ∈ T .
Step 2.2 Use the mapping T → R to determine the corresponding relation r ∈ R.
Step 2.3 For each column j in H, if Hij is not null, use the mapping column → D to determine the

corresponding domain d ∈ D.
Step 2.4 Find domain d and tuple t in relation r, and set vrtd = Hij .

2.2 Variables

A variable is an entity with three properties, a name, a role, and a value. If a variable is named v, the
role is designated as v.ρ or ρv, and the value as v.ν or νv. The corresponding role domain or domain
of roles is v.R, where v.ρ ∈ v.R, and the value domain or domain of values is v.V , where v.ν ∈ v.V .
The value is the traditional value of a variable, and the domain of values is the traditional type or user

8 Sergio Pissanetzky

type of the variable. The domain of roles is the same for all variables. For a variable v, the domain of
roles is the set of role identifiers:

v.R = {a1, a2, . . . , c1, c2, . . . ,m1,m2, . . .} (6)

where a, c,m stand for argument, codomain, and mutator, respectively, and the ordinal subscripts are
explained below. The role domain for a literal such as 1 is:

1.R = {a1, a2, . . .} (7)

because literals can only be arguments. A control variable is one that is used in the model to control
conditional logic. For example, if a program consisted of the C expressions (a), (b) and (c) of Section
2, then V = {a, b, c} is the set of all variables, and V ′ = {b} is the set of all control variables, because
b is a control variable. Below, we discuss why the condition V ′ ⊆ V must always be satisfied.

2.3 Services

At the heart of the RMC is the concept of service. A service s is a mapping that involves the value
domains of a set Vs of ks distinct variables:

Vs = {v | v is a variable in s}, ks = |Vs|. (8)

Depending on the roles played by the variables in the service, set Vs is partitioned into the subsets
of arguments, codomains and mutators. Let As, Ms and Cs be the cartesian products of the value
domains of the arguments, mutators and codomains, respectively. Formally, the service is

s : As × Ms → Ms × Cs. (9)

Our aim is to use relations to represent services by describing the roles played by the variables, that is,
the structure of the service, not the mapping itself. This approach effectively separates the structure
in a data-independent manner, and leads to a formulation that allows structure to be algebraically
manipulated. With this in mind, we assign a role identifier to each variable in s, chosen from the
set of Equation (6) in such a way that a, c or m identify the variable as an argument, codomain or
mutator, and the ordinal number corresponds with the order that the variable appears in the service
declaration. The relation that represents the structure of service (9) is defined as follows:

The relation is of degree ks + 1 and contains one single tuple. A domain O contains the
name of the service. The remaining ks domains are the role domains of the variables v ∈ Vs,
contain the roles identifiers of the variables, and are labeled accordingly.

We say that a service is executed when given values are provided for the argument and mutator vari-
ables, and some process determines the corresponding values for the mutator and codomain variables.
Implicit in the definition of execution is that assignments have been made to arguments and mutators,
and upon return, assignments are made to mutators and codomains.

Figure 1 illustrates several examples. Column K contains a primary key for identification purposes,
and the example expressions are listed in the second column. The variables used in these services
are v1, v2, v3, v4. For brevity, we refer to their value domains as ν1, ν2, ν3, ν4. The remaining columns
show the corresponding tuples in tabular form, and are labeled with “O” and the names of the roles.
Line 1 is an assignment, where v1 is the codomain and v2 is the argument. Lines 2 and 3 are in
infix operational notation, where o is the operator. When the service is provided by an operator, the
operator itself defines the roles. In line 2, v1 is the codomain and v2, v3 are the arguments, but in line
3, v1 is a mutator and v2 is the argument. Line 4 represents a function f that returns a value but does
not change its arguments (const arguments in the C++ sense). Line 5 is an example of conversion of
an expression directly from C, which describes the mapping += : ν2×ν1 → ν1. Line 6 is the transition

A Model of Computation for Source Code Analysis and Transformations 9

K Expression O v1.ρ v2.ρ v3.ρ v4.ρ
1 v1 ← v2 = c1 a2

2 v1 ← v2 o v3 o c1 a2 a3

3 v1 ← v1 o v2 o m1 a2

4 v1 ← f(v2, v3, v4) f c1 a2 a3 a4

5 v1 += v2; += m2 a1

6 δ : ν1 × ν2 → ν1 × ν2 × ν3 δ m1 m2 c3

Figure 1: Service examples.

function δ of a Turing machine in set notation, where the value domains ν1, ν2, ν3 are the states, the
alphabet, and set {`, r}, respectively.

If the column labeled “Expression” is eliminated from Figure 1, what remains is exactly a matrix
of services, as formally defined below. Section 5 contains additional examples. Services are used
to construct relational models. A service declaration is an interface, implemented by a fundamental
operation such as lines 1, 2, 3 or 5 of Figure 1, by three-address code, by a function such as line
4, or by another program, a component, an Internet service, a library subroutine, an OS function.
The implementation of a service can be described by another RMC, and a RMC can be described as
a service, and therefore as part of another RMC. Conversely, suitable sections of the RMC can be
isolated, represented by a service, and extracted as a separate submodel. This process simulates the
extraction of regularities, mentioned in Section 1. Services and RMCs are interchangeable. It is this
interchangeability what gives the RMC its power and versatility.

To define the matrix of services C, consider a set of services, and let m be its cardinality:

S = {s | s is a service}, m = |S| (10)

For each s ∈ S, let Vs be the corresponding set of variables, Equation (8), and define the set V of all
variables used in the services of set S:

V =
⋃
s∈S

Vs, n = |V | ≤
∑
s∈S

|Vs| (11)

In general, services share variables and sets Vs are not disjoint. The following steps define the matrix
of services C:
(1) Represent each service s ∈ S as a relation. This creates a set of single-tuple relations of various

degrees.
(2) Represent the set of relations in matrix format (Section 2.1), with a single domain O containing

the names of the services.
(3) Add a domain K for primary keys.

The resulting matrix of size m × (n + 2) is the matrix of services for set S. This is in fact, the same
procedure we followed to create the table in Figure 1. Some or all of the domains in Equation 9 can be
empty, with the definition adjusted accordingly. Non-empty domains in (11) can be omitted from the
matrix of services if they are of no interest for the analysis at hand. For example, details of a service
“advance tape” are of no interest, unless of course we are designing a tape recorder.

2.4 Sequences

Sequences are used to organize the order of execution of the services. After a service has finished
execution, a jump is used to determine which service will execute next. The jump is implemented
as a relation, called a sequence relation. The RMC accepts two branching decision mechanisms: un-
conditional jumps, and conditional jumps. Unconditional jumps have one single destination and are

10 Sergio Pissanetzky

described by a sequence relation with a single tuple. Conditional jumps depend on the values of one
or more discrete-valued control variables. They have multiple destinations, and are described by a
sequence relation with multiple tuples.

All sequence relations contain the domains P and F (“previous” and “following”). Both P and F
contain foreign keys into the domain K of matrix C, which contains the primary keys that uniquely
identify the services. The keys in P identify a service that has just executed, the keys in F identify
the possible destinations of the jump. If the jump is unconditional, no other domains are necessary.
For a conditional jump, consider a service s ∈ S and the conditional logic that makes the branching
decision after service s has executed. Define the set V ′

s of control variables:

V ′
s = {v | v is a control variable in the conditional logic} (12)

n′s = | V ′
s |

We have V ′
s ⊆ Vs, because values for the variables in V ′

s must be initialized or calculated prior to use,
and that requires a service. For an unconditional jump V ′

s = ∅, n′s = 0. Let nc be the total number
of possible distinct combinations for the values of the control variables. The sequence relation that
represents the conditional logic following service s is defined as follows:

The relation is of degree n′s + 2, and contains nc tuples, one in correspondence with each
combination of control values. In each tuple, domain P contains a foreign key into domain
K of matrix C that identifies service s. Domain F contains a foreign key into domain K
that identifies the destination service for that combination. The remaining n′s domains
contain the corresponding values of the control variables in V ′

s , and are labeled accordingly.

Figure 2 illustrates a few examples of sequence relations. The examples are based on a simplified
matrix of services, also shown in the figure. The flow control logic is in column “code”, written in
C-like code. There are two examples. The first example is a conditional jump. After service s1 is
executed, control jumps to either service s2 or s3, depending on the value of the control variable v.
The sequence relation has 2 tuples, one for each possible value of v. Both tuples contain 1 in domain
P , because 1 is the primary key for service s1. The keys in domain F indicate the jumps. The last
tuple corresponds to the unconditional jump to s3 after s2 has finished execution.

The second example shows a switch statement, also invoked after service s1 has executed. The first
relation has 2 tuples, one for each possible value a or b of the switch variable w. There are two more
sequence relations with one tuple each, describing the unconditional jumps to service s4 after services
s2 and s3 have completed execution, respectively. Additional examples can be found in Section 5.

C =

K service

| 1 s1 |
| 2 s2 |
| 3 s3 |
| 4 s4 |

code P v.ν w.ν F
s1; if(v){s2; }s3; 1 true 2

1 false 3
2 3

s1; switch (w){ 1 a 2
case a : s2; break; 1 b 3
case b : s3; break; } 2 4

s4; 3 4

Figure 2: Sequence examples, based on the simplified matrix of services C

If the column labeled “code” is eliminated from Figure 2, what remains is a matrix of sequences (except
for the domain of actors A, discussed below). The matrix of sequences Q, Equation (1), is the matrix
representation of the set of sequence relations for all services. Let S be the set of services, Equation

A Model of Computation for Source Code Analysis and Transformations 11

(10), let s ∈ S be a service, consider the control variables V ′
s , Equation (12), and define the set V ′ of

all control variables:

V ′ =
⋃
s∈S

V ′
s , n′ = |V ′| ≤

∑
s∈S

|V ′
s | (13)

In general, services share variables and sets V ′
s are not disjoint.

In addition, actors must be considered. Actors initiate sequences. An actor initiates a sequence by
activating an unconditional jump to a service. There can be many actors and many different sequences
in a model. The actors are not necessarily independent. A typical case is where an actor that starts
from a menu depends on another that displays the menu. Sequences end in a special exit service.
There is no jump after exit, and execution can resume only if an actor activates another sequence. To
construct matrix Q follow these steps:
(1) For each service s except exit, consider the flow control logic immediately following service s.
(2) Convert the logic to a relation, as discussed above in this section. Since V ′ ⊆ V , use the same

subscripts to identify variables in V ′ as were used to identify the corresponding variables in V .
(3) Represent the set of sequence relations in matrix format (Section 2.1).
(4) Add a domain A for actors, and tuples representing unconditional jumps to the corresponding

services. The result is matrix Q.

Once again, structure has been extracted in a data-independent manner. This time, it is the structure
of the execution sequences, extracted to matrix Q and separated from the data, the values of the
control variables. The decision of where to jump to is always made in matrix Q. Matrix Q retains
detailed control over the sequences.

2.5 The process algorithm

The process algorithm is the algorithm that executes the RMC. This algorithm, already explained in
Section 2, is formally defined here. We assume that matrices C and Q defined in Equation (1) are
given, and we use dot notation to refer to domains in the matrices, for example Q.P would be domain
P in matrix Q. The searches mentioned in the algorithm can be implemented as relational select and
join operations. The definition of V ′

s given in Equation (12) is used in the algorithm.
Algorithm 3. Relational Model Process. For any actor a ∈ Q.A:
Step 3.1 (Enter execution) Search Q.A for the tuple that matches a and find the foreign key f in Q.F

for that tuple.
Step 3.2 (Find service) Search C.K for the match to f and find service s in C.O.
Step 3.3 (Stop on exit) If s = exit, stop. Otherwise, continue.
Step 3.4 (Execute a service) Execute service s.
Step 3.5 (Find sequence relation) Search matrix Q for the set Θ of all tuples that satisfy Q.P = f .
Step 3.6 (Find control variables) Using the set Θ just found, determine V ′

s for service s.
Step 3.7 (Find jump) Search Θ for the tuple that satisfies (∀v ∈ V ′

s) Q.v.ν = v.ν
Step 3.8 (Follow jump) Find a new value for f in Q.F in the resulting tuple and go to Step 3.2.

All matches must be unique, assuming the conditional logic is correct. This completes the definition of
the relational model. We will now prove the equivalence of the RMC with the simple Turing machine
to qualify the RMC as a virtual machine.

3 Turing Equivalence

In this section we prove that the RMC is equivalent to a simple Turing machine. By proving it, and
since the Turing machine is considered equivalent to execution of a program, we will have proved that

12 Sergio Pissanetzky

the RMC is also equivalent to execution of a program and qualifies as a virtual machine. The Turing
machine can be defined as a 7-tuple [54]:

T = (Ω,Σ,Γ, δ, ωs, ωa, ωr) (14)

where Ω is the (finite) set of states, Σ is the (finite) input alphabet and [/∈ Σ, Γ is the (finite) tape
alphabet, [∈ Γ, Σ ⊂ Γ, δ is the transition function, δ : Ω×Γ→ Ω×Γ×Λ, and ωs, ωa, ωr ∈ Ω, ωr 6= ωa

are the start, accept and reject states, respectively, [indicates a space or blank, and Λ = {`, r}. The
process algorithm for the Turing machine is:

Algorithm 4. Turing Machine Process.

Step 4.1 (Initialize) Initially, the input string w ∈ Σ∗ is in the leftmost cells of the tape, and the rest
of the tape is blank. The head is in the leftmost cell and the machine is in state ωs.

Step 4.2 (Read) Read symbol from cell under the head.
Step 4.3 (Transition) Execute δ to find the new state, the new symbol, and the direction.
Step 4.4 (State) Go to the new state.
Step 4.5 (Test) If the new state is ωa or ωr, stop. Otherwise continue.
Step 4.6 (Write) Write the new symbol to the cell under the head.
Step 4.7 (Move) If the head is on the leftmost cell and the direction is left, go to Step 4.2. Otherwise

move one step in the indicated direction.
Step 4.8 (Loop) Go to Step 4.2.
where “*” is the star operation or Kleene closure. The theorem is as follows:

Theorem. Every Turing machine has an equivalent relational model.

The proof is by construction.We first construct a relational model of the Turing machine, and then
prove that the model emulates the Turing machine.

3.1 The Relational Model of the Turing Machine

To model the Turing machine, we associate a variable of type Γ with each cell, and let G be the set of
all these variables. We further introduce the following variables:

g the array of cell variables, a variable of type {array of variables of type Γ}.
g0 the input string, a variable of type {array of variables of type Σ}.
γ the current cell value, of type G.
c the current cell, of type {cell}.

c0 the initial cell, of type {cell}.
ω the current state, of type Ω.
λ the head direction, of type Λ.
b true if ω = ωa, ωr of type {true, false}.

We recall that a type is a set and note that {array . . .} is notation for a set of arrays. An array is an
ordered set. Define set V of Equation (11) as follows:

V = {g, g0, γ, c, c0, ω, ωs, ωa, ωr, λ, b} (15)

A Model of Computation for Source Code Analysis and Transformations 13

where we have used ωs, ωa and ωr as variables of type Ω. Define matrices C and Q as follows:

C =

O c ω γ λ g b g0 ωs ωa ωr c0

| in c1 c2 c3 a4 a5 a6 |
| rd a1 c3 a2 |
| tr m1 m2 c3 |
| lg a1 c4 a2 a3 |
| wr a1 a2 c3 |
| mv m1 a2 a3 |
| ex |

Q =

A P b F

| 1 in |
| in rd |
| rd tr |
| tr lg |
| lg true ex |
| lg false wr |
| wr mv |
| mv rd |

(16)

To simplify notation, we have omitted domain K of primary keys from matrix C, and refer to the
services by their names. We have also labeled some columns with the names of the corresponding
variables, although, of course, we refer to the role domains in matrix C, and to the value domains in
matrix Q. There is only one actor, say actor 1. Initially, all cell variables in set g are set to [(blank).
Given are: g0, ωs, ωa, ωr, and c0, the leftmost cell in the tape. Service in initializes c form c0 and ω
from ωs, and writes array g0 left-justified to g. Service rd reads a value for γ from cell c in array g.
Service tr is the Turing transition function. It finds values for ω, γ and λ from given values of ω and
γ. Service lg calculates boolean variable b to be true if ω is either the accept or the reject state, or
false otherwise. Service wr writes the value of γ into cell c of array g. Service mv moves the head left or
right from cell c depending on the values of λ and c0, and sets a new value for c. It needs c0 because
it must avoid moving left from the leftmost cell. Service ex returns control or stops execution.

Note that Ω,Σ and Γ do not appear explicitly in the model. Ω and Γ appear as given constants in
the model of the transition function δ, and Σ appears as a given constant in the model of the input
string g0. These two models, however, are irrelevant for our purposes. Note also that b appears in
matrix C only as a codomain, but seemingly is never used. This is because b is a control variable, and
is used in matrix Q to control the flow control logic.

3.2 Turing Equivalence of the RMC

Two machines are equivalent if they recognize the same language. If a language is recognized by a
Turing machine, we must show the existence of a relational model that recognizes it. We do that by
converting the Turing machine into an equivalent RMC that emulates the Turing machine. In fact, we
have converted the Turing machine defined in Equation (14) into the RMC defined by matrices C and
Q of Equation (16). We must only show that this RMC simulates the Turing machine.

Execution of the RMC process algorithm, Algorithm 3, actor 1, on matrices C and Q, simulates
step-by-step the execution of Algorithm 4, the Turing process algorithm. Algorithm 3 executes the
services in matrix C in the following order:

(1) Service in. This simulates Step 4.1.
(2) Service rd, which simulates Step 4.2.
(3) Service tr, simulating Steps 4.3 and 4.4.
(4) Service lg, the calculation of control variable b used by the RMC.
(5) Either service ex, a simulation of the first part of 4.5, or service wr, a simulation of the second

part of 4.5 and 4.6.
(6) Service mv, which simulates Step 4.7.
(7) Loop to Service rd, simulating Step 4.8.

The theorem proves that there is a RMC for every computation that can be executed on a Turing
machine, and qualifies the RMC as a virtual machine. The significance of this conclusion is that
matrices C and Q, with the relations and domains they contain, given by Equation (1), formally define

14 Sergio Pissanetzky

the structure of an executable program. The elements of the matrices are the data of the program.
The separation between structure and data allows algorithms to be designed that use the structure to
operate on the data in a data-independent manner and can interoperate among each other.

We said in the Introduction that the relational model of computation is inspired in mathematical
notation. The ability of mathematical notation to describe all algorithms is inherited by the RMC,
and makes it a virtual machine, a universal container for all executable algorithms.

4 Properties and Applications of the Relational Model

The RMC was defined by Equation 1. The preceding sections have covered related definitions and
fundamental properties of the RMC. In this section we introduce additional terminology and examine
other important features and techniques of the RMC that can be applied for designing algorithms.
The mechanics of operation of the RMC is illustrated by the examples in Section 5.

4.1 Size and scalability

A crude estimate of the size of a full RMC model hierarchy can be made as follows. Roughly speaking,
there would be one submodel per class for an OO program, or one submodel per function or subroutine
for a non-OO program. The main model consists of a list of services, one per each method in the
program, each service occupying one line in matrix C. Method or function declarations go to the
main model, executable statements from the functions or methods go to the service matrices of the
corresponding submodels, and conditional statements and polymorphic class hierarchy declarations
go to the sequence matrices of the submodels2. The model and submodels have about the same
granularity as the source code. Rows in the service matrices only contain role identifiers (see, e.g.,
Figure 1), considerably shorter than names used in code. Rows in matrix Q should also be about the
same size or smaller than the corresponding conditional statements in the code. Thus, the size of the
model, measured in characters, should be smaller than or comparable to the size of the source code.

Some applications may require a finer granularity. Example E1 in Section 5 illustrates a problem
of refactoring where a section of code has been refined all the way down to three-address code. This
should not affect the overall size, however, because refactoring is usually a local procedure.

Scalability is achieved in mathematical notation by defining concepts of progressively greater gen-
erality. Scientists use these concepts in their reasoning, while keeping in mind the more detailed
definitions. The corresponding technique in the RMC is submodelling, where parts of a model are
removed and described by a submodel, leaving the main model smaller and more compact and man-
ageable. submodelling improves both performance and scalability, and submodels can nest to any
depth.

The power of relational databases to handle large volumes of information of all kinds is well-known.
The power of sparse matrices to handle very large problems is also well-known. Engineers routinely
solve problems with matrices having millions of rows and columns. A sparse matrix with a constant
number of non-null elements per column grows in size only linearly with the size of the problem. This
is the case for the matrix of services for the low-coupling, high-cohesion case. The growth may be
somewhat faster for a high-coupling case.

The combination of submodelling, relational databases and sparse matrices holds a promise for
excellent performance and scalability. Yet, the fact that an algorithm is supported does not mean
it will operate properly. Each algorithm must be investigated case by case. The most promising
algorithms are the ones that take advantage of the structure, properties and techniques of the RMC.

2A reviewer has pointed out that converting polymorphism to conditional logic can cause scalability problems, and
has suggested a static points-to analysis [55] to reduce the complexity of the required conditionals.

A Model of Computation for Source Code Analysis and Transformations 15

4.2 Model extensions

Using the RMC as-is may not be practical in all cases, and additions may be needed when implementing
specific algorithms. The RMC is a database, a set of relations coupled with primary key/foreign key
links. Extra relations can always be added and linked to represent the additional information, without
upsetting the general operation or properties. We refer to such additions as extensions. Extensions are
used to represent program features not included in the formal definition. For example, an encapsulation
algorithm that creates classes and methods, may have to keep track of method-to-class assignments.
To do it, simply add a column to matrix C with class names in correspondence with the methods.
Inheritance relationships for methods can be dealt with in a similar manner. An extra row in C can
keep track of the organization of a hierarchy of classes or a structure of types and subtypes. In all
cases, however, it would probably be better to use separate relations in order to keep the database
better normalized, but this is an implementation detail.

To add a relation to an existing matrix simply modify sets T and D as needed and add the new
rows and columns to the existing matrix. Merging two matrices, or removing a relation or a subset
of relations from a matrix, are both straightforward. These features support the property of model
nesting of the RMC.

4.3 Relationships with graphs and other models

To every model or submodel in the RMC hierarchy, irrespective of granularity, there corresponds a
labeled directed graph G = (V,E). The vertices include the actors in matrix Q and the services in
matrix C, labeled with the roles played by the parameters in the services. The edges are the tuples
in matrix Q – each of which contains the foreign keys for two distinct vertices – appropriately labeled
with the values of the control variables existing in the tuple. Directed graph concepts such as paths
and cycles, strong components, section subgraphs, directed adjacency level structures, and others,
directly apply to each submodel of the RMC. A wealth of powerful existing graph algorithms such as
breadth-first and depth-first search, subgraphing and graph rewriting also apply. What can be done
with the graph can also be done with the relations. In this paper, sometimes we use graph notation
and terminology when there is no equivalent relational terminology.

For a submodel of fine granularity, where the services are similar to three-address code, the corre-
sponding graph is similar to the well-known control flow graph (CFG) of a program[56]. Considerable
experience gained with CFGs for manipulating programs can be directly applied to the RMC. Well-
known procedures used to form the CFG from the program could be used to form the RMC submodel.
An Abstract Syntax Tree (AST), a Data Flow Diagram (DFD), or a three-address code version of the
program, can all be similarly obtained from a fine-grained RMC submodel, and similar considerations
apply.

The direct conversion of UML models into RMC models is a possibility. We have been able to
(manually) convert static structure diagrams such as class diagrams with little effort. Most features
map directly, others such as member visibilities require additional tuples. A UML-RMC collaboration
is possible. The RMC is a relational database, and as such it is ideally suited to handle detailed OO
information. The RMC can also be created from business rules, and an example is given in Section
5.3.

It is well known that a database can handle a very large volume of information, and that front end
interfaces can be designed to retrieve that information and present it to users in many different forms.
Similarly, an interface can be designed that hides the RMC and emulates the functionality of other
structures, such as the ones mentioned near the end of Section 1.1, or even UML diagrams or source
code. Such an interface would not be very efficient, but it would allow easy porting of existing tools
and testing of new ones.

16 Sergio Pissanetzky

4.4 Commutativity and permutation of services and sequences

Let csd be a non-null element in matrix C, corresponding to service s ∈ S and domain d ∈ D, and
let ϕsd be the first symbol in the value of csd. Thus, the value of ϕsd is either a, c, or m. If ϕsd = c,
service s is said to be a domain constructor for domain d. A domain can have many constructors, but
must have at least one. A service can be a domain constructor for any number of domains, or none.

Consider two different services s and s′. Services s and s′ are said to commute if they satisfy the
following two conditions:
(1) s and s′ are consecutively and unconditionally sequenced. In other words, matrix Q contains one
and only one tuple that has a foreign key for s′ in domain F , and this tuple contains no conditional
logic and has a foreign key for s in domain P . In CFG terminology, we would say that s is an immediate
dominator of s′.
(2) For every domain d ∈ D, either (2a) ϕsd, or ϕs′d, or both, are null, or (2b) ϕsd = ϕs′d = a.
Domain-disjoint services always satisfy (2a). We note that a pair (a, a) in the column of domain d
means that the value of the corresponding variable is being used by both services s and s′, but not
changed, so the order doesn’t matter. Any other combination would involve c or m and would mean
that the value is changed by at least one of the services, in which case order matters.

The order of execution of two commutative services can be reversed without affecting the behavior
of the program. Service commutation is a matrix operation that affects matrix Q, not C. A permutation
of the sequence of services is obtained when commutation is applied one or more times. A permutation
is said to be behavior-preserving if it can be obtained as a sequence of commutations between services
that commute. A behavior-preserving permutation amounts to a behavior-preserving refactoring of
the program.

An execution path in the matrix of sequences Q corresponds to a directed path in the control flow
graph. The path consists of a sequence of tuples linked together. A cycle is a closed path. For example,
in matrix Q of Equation (16), the sequence of tuples (rd-tr, tr-lg, lg-true-ex) is an execution path,
and (rd-tr, tr-lg, lg-false-wr, wr-mv, mv-rd) is a cycle. Under certain conditions, execution paths are
independent and can be executed in any order. A typical case is a fork, where conditional logic selects
among two or more possible paths in such a way that only one of them is followed at a time. These
concepts are well known in control flow graph theory, and will not be expanded here.

Domains in a relation always commute. The notation we use is designed to preserve this property,
because arguments, mutators and codomains are qualified with ordinals making their order in the
service declaration independent from any order assumed for the domains. The columns of matrices C
and Q can be permuted in any arbitrary order.

There is a form of commutativity between control variables that may have an important effect on
refactoring when single-inherited polymorphism (SIP) or multiple-inherited polymorphism (MIP) are
used for implementation. It applies to control flow branches that depend on two or more conditionals.
Consider the following C programs:

Program A Program B Program C
if(a && b)s1; if(a && !b)s2; if(a){if(b)s1; else s2;} if(b){if(a)s1; else s3;}
if(!a && b)s3; if(!a && !b)s4; else {if(b)s3; else s4;} else {if(a)s2; else s4;}

Programs A, B and C are equivalent, but many different implementations are possible. They must be
examined in the light of the fact that the value domains of control variables in matrix Q are not ordered
and always commute. There exists an inherent fundamental symmetry between variables such as a or
b in Program A. This symmetry is preserved if Program A is implemented using MIP. If there are na

possible values of a, and nb of b, a total of na + nb base classes are required. An upgrade to a new
value of a, for example, would require just one new class. A symmetry-preserving SIP implementation
is also possible if a and b are combined into a composite domain (with nanb values), but this would
require nanb different base classes, and an upgrade to a new value of a would require nb new classes.

A Model of Computation for Source Code Analysis and Transformations 17

This may be prohibitive if na, nb > 2.
The forms B, C, instead, discriminate one condition at a time, forcing an artificial order between

the control variables and breaking the symmetry. The result is a very large number of choices, none
of them very good. Consider a general case with n control variables with 2 possible values each. A
simple analysis demonstrates that there are n! different possible orderings among the n variables. If
either SIP or conditionals are used for implementation, there are 22n−1 possible combinations for each
ordering, for a grand total of n! 22n−1. For example, there are 16 ways of coding a link with 2 control
variables, and 768 for one with 3 control variables, and this is just one link. Designers may not even
realize they are dealing with such multiplicity and leave it for developers to sort it out. This is a good
example of the support that the RMC can provide for software analysis. Example E2 of Section 5.3
expands on the matter.

4.5 Modeling object-oriented features

The RMC models OO features naturally. The columns of matrix C represent types. A partition of
the set of columns into subsets models type encapsulation and creation of user types, with each subset
representing a new user type. Column subpartitions create type hierarchies that can model single and
multiple type inheritance [53].

The rows of matrix C represent services. A partition of the set of rows into subsets models service
encapsulation and the creation of methods, with each subset representing a new method. Row par-
titions must be compatible with the sequences of execution, and an appropriate permutation of the
sequences must exist for the encapsulation to be legal. Conditions under which behavior-preserving
permutations of the sequences of execution are possible have been discussed in Section 4.4.

Classes of objects can be modelled as associations between methods and user types, and method
inheritance naturally combines with type inheritance. A class can in turn be converted into a separate
service and described by a separate submodel, thus effectively eliminating it from matrix C and creating
recurrence for model processing.

Method inheritance is also modelled naturally. In the traditional OO sense, a derived class inherits
all the attributes and methods from its ancestors, and can contain additional attributes and methods
and overrides of the inherited methods. This definition makes the attributes and methods of a derived
class a superset of the attributes and methods of the parents. To reduce confusion, we avoid terms
such as subclass or superclass, and use terms such as derived, base, ancestor or descendant for classes,
and subset or superset for sets. A derived class corresponds to a superset. Consider, for example,
the set D of all domains, Equation (5), and let D1 be a subset of D and D2 a subset of D1, so that
D2 ⊆ D1 ⊆ D. Then D1 contains or “inherits” all the types in D2, and, if D2 is a proper subset of D1,
then D1 has some additional types of its own. Similarly, a method that uses domains in D2, also uses
domains in D1. If D1 and D2 become classes, then D2 is the base and its superset D1 is the derived
class, and if the method is assigned to D2, it is “inherited” by D1. Multiple inheritance works in the
same way. Let D3 ⊂ D1 be another subset of D1. Then D1 is a superset of both D2 and D3, and its
class is derived from both.

4.6 Submodelling

Submodelling is a very important technique. Under certain conditions, a subset of domains can be
converted into a composite domain and a subset of services into a composite service, and described
by a separate submodel. The submodel can be extracted from the main model, leaving only the
declarations for the composite service and the composite domain. A submodel can also be inserted
into the main model. Extracting a submodel makes the main model smaller and more amenable for
high level transformations. Inserting a submodel refines the granularity and allows more detailed
transformations. By way of the extraction and insertion of submodels, the granularity of the main

18 Sergio Pissanetzky

model, or parts of it, can be adjusted to the desired level of refinement, as appropriate for the problem
at hand. A submodel is a complete model and can, in turn, be submodelled.

Behavior-preserving permutations of the sequences of execution may be needed to meet the required
conditions. The purpose of the permutations is to bring certain services together in the sequence.
Subsequently, the reordered set of services is partitioned, and the subsets are encapsulated to create
higher level services or methods.

A partition of the set of domains is also necessary, but domain permutations are not needed because
domains are not ordered. The set of domains is partitioned, and the subsets are encapsulated to create
composite domains. All permutations and partitions are logical, and no movement of data is needed.
Finally, the composite services and domains are extracted into submodels, and service and domain
declarations are inserted in their place. Example E1 of Section 5.1 illustrates submodelling.

4.7 An RMC-centric development environment

Traditionally, the source code is the main repository or “source” of a program. However, OO technology
is intended to facilitate developer-program communication, and by its very nature, it is limited in
its ability to serve as data for algorithms. The fact that OO code is not a good container for such
algorithms has led to the development of many different code representations reported in the literature,
some of which we discussed in Section 1.1. Instead, an RMC-centric environment can be considered,
where the RMC is the formal repository and the code remains as a means for program-developer
communication. Other authors have considered similar ideas. O’Keeffe et al. [20] believe that the goal
of the OO approach is to minimize the cognitive complexity of programming tasks. A refactoring-
based development environment has been proposed [9]. A relational database with the source code’s
semantic information that effectively isolates the analysis engine from the refactoring transformations
and metric extraction was proposed as well [45]. The feasibility of the idea depends on the ability of
the RMC to automatically communicate with code and other models. Separating the two functions –
a communication hub and a formal repository – can prove advantageous for both.

5 Examples

The examples are intended to illustrate the mechanics of operation of the RMC and the support
that the RMC can provide to emulate software analysis and transformation algorithms. The RMC is
designed to be operated by an algorithm. The model does not make decisions. Instead, it provides
an environment for algorithms to perform analysis tasks and automate the decisions. In this paper we
discuss the environment, not the algorithms, but we must emphasize the model’s most useful features
and support for the algorithms.

The model is not intended for the developers to view. Instead, developers would most likely
see a menu of options, prepared by an algorithm after performing a suitable analysis of the model.
Developers may have access to “outside information”, such as business rules, an existing design that
calls for a particular class structure, or knowledge of a good solution for a similar problem. The menus
should allow them to use the information and guide the algorithm, and to enter names of their choice
so the results are not cryptic. The algorithm may also propose a choice of viable solutions, rated
according to some metrics. If this is a refactoring run from existing software, developers may want
to choose combinations that “blend” better with the rest of the code. The model precludes illegal
transformations and promotes uniform style and good programming practices.

The model will be small in most cases. For example, when refactoring, developers would typically
select a section of code that needs improvement and direct the algorithm to refine that section. The
algorithm can, then, find other related sections and refine them as well. The process is not unlike to

A Model of Computation for Source Code Analysis and Transformations 19

what developers do when they refactor manually, and should be amenable to automation because the
model has the required information.

In the rare cases where nothing at all is known about the program, the process would be one of
analysis. The RMC can find some promising permutations, examine them, rate them based on some
design metrics, find applicable patterns, and present the results as suggestions to the developers. For
an OO program, CK metrics is appropriate. CK metric consists of a suite of 6 different measurements.
Suppose the RMC can select some legal encapsulations as candidates and obtain values for Couplings
Between Objects (CBO) and Lack of Cohesion in Methods (LCOM) for the objects and methods that
would result from each candidate. The developers would be able to select one of the options and
produce code with the desired properties, such as robustness and understandability, which improve
with high cohesion and low coupling, or high coupling for better performance.

In this case, where nothing at all is known about the program, the number of possible unquali-
fied permutations may be very large, hence the selection of promising permutations is an important
issue. The process we are discussing is one of regularization, akin to the extraction of regularities
from a complex body of information with the purpose of reducing its complexity (Section 1). The
more “regular” the regularities are and the more frequently they appear, the more “promising” the
permutation is. Example E1 suggests some possibilities. Our practical experience indicates that the
number of attractive choices is usually very limited. Maintainers also know that there aren’t too many
good refactorings for a given program.

The Turing machine model of Section 3.1 serves as an example as well. It illustrates direct modeling
from business rules, submodelling, the use of granularity, the use of conditionals, and the ability of
the RMC to mix granularities. Services in and lg in matrix C are very detailed, while service tr,
the transition function, is coarse-grained. Several services need submodels. Service in, for example,
initializes 3 domains at once and can be described by a separate submodel with 3 services, one for each
domain, that execute in sequence. In the submodel, the service that initializes domain g, which is an
array, also needs a submodel with details on how to initialize an array. For our purposes, however, the
submodels are all irrelevant. An example of the use of conditionals is provided by the tuples (lg, true,
ex) and (lg, false, wr) in matrix Q of the Turing model. We note that we have constructed this model
directly from the definition or “business rules” of the Turing machine. We feel that this possibility is
important and should be explored further.

5.1 Example E1. Part I.

Example E1, Part I illustrates the following:

- the mechanics of the relational model;
- modeling a straight-line fragment of code using a very fine granularity;
- commutativity and row and column permutations;
- encapsulation by matrix partitioning and alternative encapsulations;
- formation of classes and methods;
- model nesting and submodelling techniques;
- the refactorings Move Method and Rename Method [13], and other Rename refactorings.

In this example we follow Chidamber and Kemerer [21] and apply the notion of designer viewpoints,
a set of empirical binary relationships between the elements of an OO design that represent the
designer’s intuitive understanding of complexity. The viewpoints satisfy certain axioms, and map to
formal entities, which we can then use to proceed on formal and coherent grounds. This is the essence
of the generally accepted concept of model, used by engineers throughout history and advocated in
this paper.

Of particular interest to us when working with the RMC is the concept os similarity. Given two
entities with comparable properties, similarity is the intersection of their set of properties, and degree

20 Sergio Pissanetzky

of similarity is the cardinality of that intersection. For example, if variables are properties of methods,
the similarity of two methods is the set of variables they share. Designers mind similarity because
it allows them to control important metrics such as cohesion and coupling. Encapsulating similar
methods and their shared variables into an object class makes the class more cohesive. Encapsulating
all pairwise similar methods makes the class less coupled with other classes.

Example E1 illustrates RMC support for these concepts by outlining the mechanics of encapsula-
tion and submodelling. To present the example, we use a simple algorithm that considers similarities
between methods and between roles of variables. We caution the reader that there is more to encapsu-
lation than this. For example, depth of inheritance and number of children also affect coupling, but are
not covered in the example. Example E1 begins with Program P1, written in C in a style reminiscent
of three-address code, an intermediate representation language used by many compilers and virtual
machines (see for example [57]). The exercise results in two different object-oriented designs, D2 and
D3, and their corresponding C++ programs P2 and P3, both equivalent to Program P1. Since P1 can
be obtained from either P2 or P3, conversion between P2 and P3 is also possible, and the example
amounts to a refactoring of an OO program. Example E1 has some similarity with an example used
in our early work [58]. Program P1 is shown in Figure 3. There is only one actor and no conditional
logic. We can omit the matrix of sequences and assume that execution follows the order of the rows in
the matrix of services, starting with the first row. The matrix of services can also show the partitions
used to encapsulate user types and define classes and methods, and even the refactorings themselves.
It is an ideal tool for the presentation of simple examples.

We use upper-case letter as class names, such as G or H, and lower-case letters followed by a
number as object names, such as g1, g2, g3 for objects of class G. Methods are named with a single
upper-case letter followed by the name of the class they belong to, and a number, e.g. AG1, AG2 are
two occurrences of method AG of class G. Individual variables are named with one or two lower-case
letters. Matrix C0, shown in Figure 3, is the matrix of services for Program P1.

PROGRAM P1
1. d = 1;
2. a = 2;
3. b = 3;
4. rx = 4;
5. ry = 5;
6. vx = 6;
7. vy = 7;
8. fx = 8;
9. fy = 9;
10. ta = a * fx;
11. tb = a * fy;
12. tc = d * vx;
13. td = d * vy;
14. te = ta + tc;
15. tf = tb + td;
16. tg = b * fx;
17. th = b * fy;
18. rx = rx + te;
19. ry = ry + tf;
20. vx = vx + tg;
21. vy = vy + th;

C0 =

K O d a b r r v v f f t t t t t t t t 1 2 3 4 5 6 7 8 9
x y x y x y a b c d e f g h

| 1 = c 1 |
| 2 = c 1 |
| 3 = c 1 |
| 4 = c 1 |
| 5 = c 1 |
| 6 = c 1 |
| 7 = c 1 |
| 8 = c 1 |
| 9 = c 1 |
| 10 ∗ 1 2 c |
| 11 ∗ 1 2 c |
| 12 ∗ 1 2 c |
| 13 ∗ 1 2 c |
| 14 + 1 2 c |
| 15 + 1 2 c |
| 16 ∗ 1 2 c |
| 17 ∗ 1 2 c |
| 18 + m 2 |
| 19 + m 2 |
| 20 + m 2 |
| 21 + m 2 |

Figure 3: Program P1 and the matrix of services C0 of size 21×28. Two-letter column captions have
been stacked to make them fit. For the same reason, we have written “1” or “2” instead of a1 or a2,
and we use unsubscripted “c,m” to identify codomains and mutators. There should be no confusion.

A Model of Computation for Source Code Analysis and Transformations 21

We will now apply suitable permutations to rows and columns of C0 and encapsulate services into
methods and domains into user types, and associate them to create classes of objects. We assume
throughout that nothing is known about the problem, and base our refactoring decisions on similarity
alone, as discussed above. Cases where nothing at all is known about a problem are rare. In this case,
we may have been told that program P1 describes one time step of a simulation of the motion of a
mass particle under the action of a force, in two dimensions. This alone would have prompted us to use
the well known vector class, and to command the RMC to encapsulate (rx, ry), (vx, vy), and (fx, fy)
together. However, as we show below, program P1 has an alternative encapsulation worth considering:
(d, a, b). We missed this option ourselves when we first refactored program P1 manually, and noticed
it only after we examined matrix C0 for regularities. It seems likely that developers would have missed
it as well, because of the vector preconception, and a comparison between the two options would never
have been made. This remark suggests that model-based mechanical analysis may complement human
analysis, and justifies our assumption.

If nothing at all is known about program P1, the permutations should be determined by examination
of matrix C0 for regularities. We begin by partitioning away domains K and O, and all the literals,
which are of no interest for the encapsulation. Examining the remaining columns, one may notice that
some have 2 entries, others have 3. Among the ones with 3 entries, we notice the similarities {c, 2,m}
for vx and vy, and {c, 2, 2} for fx and fy. These 2 pairs are candidates, but they only appear twice
each. There are also 3 columns with pairwise similarities {c, 1, 1}, suggesting the encapsulation of (d,
a, b). This is a stronger regularity because it appears 3 times.

The analysis can be extended further by examining the services associated with the candidate
domains. For example, the c in domains vx, vy corresponds to services 6 and 7, both of which have
a 1 under the literals, which increases the rating of vx, vy as candidates. In the case of (d, a, b),
all 6 services associated with the 1’s have the pairwise similarity {1, 2, c} in their rows, and all 3
services associated with the c’s have 1 in their rows. This is a strong similarity. A larger problem
would probably have rows and columns with many more entries, and yield even stronger similarities. 3

Proceeding along these lines, and applying only legal permutations consistent with the commutativity
rules of Section 4.4, two different solutions were obtained: matrix C1 of Figure 4 was obtained when
starting from (d, a, b), and matrix C2 of Figure 8 was obtained when starting from (vx, vy) and (fx,
fy). Matrix C2 is discussed in Section 5.2.

Next, we discuss matrix C1. The 17 domains of interest in matrix C1 have been partitioned into 3
subsets, g1, h1 and h2. Subsets h1 and h2 have identical structures. Subset g1 is an object of a class,
which we shall call G, and subsets h1 and h2 are objects of a class to be called H.

The 21 services are partitioned into 5 subsets: CG1, CH1, CH2, MH1, MH2. Subset CG1 contains
the 3 domain constructors for the domains in subset g1, and is therefore the class constructor for class
G, hence the name. Subsets CH1 and CH2 have identical structures. They are two appearances of
the class constructor for class H. They become method CH. Subsets MH1 and MH2 have identical
structures. They are two appearances of a method of class H. They both become method MH.

Domain subsets h1 and h2 are sub-partitioned in two parts each. For h1, these parts are (rx, vx,
fx) as class attributes, and (ta, tc, tg, te) as temporaries for method MH1. This is indicated by the
corresponding domain constructors. Domain h2, of course, is similarly subpartitioned.

At this point, we can use matrix C1 to illustrate an application of the Fowler Move Method refac-
toring. Suppose a request is made (quite improperly) to move method MH1 to class G. One way to
achieve that would be to replicate temporaries ta, tc, tg, te as temporaries in class G, and give class
G access privileges to modify class H members rx, vx. This is the complete Move Method refactoring.
Rename refactorings are also simple. In a typical implementation, all names would be in a separate
normalized relation, and the matrices would contain foreign keys into that relation instead of the actual
names used in this example. To change the name of a method, class, class attribute, method argument,

3One of the reviewers suggested using a search-based approach [20] to automate the decisions.

22 Sergio Pissanetzky

C1 =

g1 h1 h2 literals

K O d a b r v f t t t t r v f t t t t 1 2 3 4 5 6 7 8 9
x x x a c g e y y y b d h f

| 1 = c 1 |
| 2 = c 1 | CG1

| 3 = c 1 |
| 4 = c 1 |
| 6 = c 1 | CH1

| 8 = c 1 |
| 5 = c 1 |
| 7 = c 1 | CH2

| 9 = c 1 |
| 12 ∗ 1 2 c |
| 10 ∗ 1 2 c |
| 16 ∗ 1 2 c | MH1

| 14 + 1 2 c |
| 18 + m 2 |
| 20 + m 2 |
| 13 ∗ 1 2 c |
| 11 ∗ 1 2 c |
| 17 ∗ 1 2 c | MH2

| 15 + 1 2 c |
| 19 + m 2 |
| 21 + m 2 |

Figure 4: The permuted and partitioned matrix C1. The matrix contains object g1 of class G and two
objects of class H. CG1 is the constructor for class G. There are two occurrences of a constructor CH
for class H, and two occurrences of a method MH of class H. Object g1 of class G is passed to MH
as an input argument. A sub-partition of h1 and h2 separates attributes for class H from temporaries
used by method MH.

CCG =

O d a b i1 i2 i3

| = c 1 |
| = c 1 |
| = c 1 |

CCH =

O r v f i4 i5 i6

| = c 1 |
| = c 1 |
| = c 1 |

CMH =

O d a b r v f t1 t2 t3 t4

| ∗ 1 2 c |
| ∗ 1 2 c |
| ∗ 1 2 c |
| + 1 2 c |
| + m 2 |
| + m m 2 |

Figure 5: The submodels CG, CH and MH for matrix C0 of Figure 3. Primary keys and sequences
have been omitted.

C11 =

O g1 h1 h2 1 2 3 4 5 6 7 8 9

| CG c 1 2 3 |
| CH c 1 2 3 |
| CH c 1 2 3 |
| MH 1 m |
| MH 1 m |

Figure 6: Matrix C11, the simplified main model corresponding to matrix C0 of Figure 3.

etc, all that is needed is to change that name in one place.
We are now ready to define the submodels. There is one submodel for method CG, one for method

CH, and one for method MH. They are shown in Figure 5. When the submodels are extracted from
C1, the main model becomes much smaller. It is shown in Figure 6. The submodels and the reduced

A Model of Computation for Source Code Analysis and Transformations 23

TOP

G
d, a, b;

CG(i1, i2, i3){
d = i1;
a = i2;
b = i3;

}

H
r, v, f;
CH(i4, i5, i6){

r = i4;
v = i5;
f = i6;

}
MH(g){

t2 = g.d * v;
t1 = g.a * f;
t3 = g.b * f;
t4 = t1 + t2;
r = r + t4;
v = v + t3;

}

PROGRAM P2

main{
G g1(1, 2, 3);
H h1(4, 6, 8);
H h2(5, 7, 9);
h1.MH(g1);
h2.MH(g1);

}

Figure 7: Design D2, the final design for Example E1, Part I. Program P2 is one possible C++ version
of Program P1, corresponding to the main model C11 of figure 6. The classes G and H correspond to
the submodels of Figure 5. g1 is an object of class G, and h1, h2 are objects of class H.

main model are all RMC models on their own right, and are ready for a repeat of the entire process we
have just described: row and column permutations, encapsulation of services and domains, definitions
of classes and methods, submodelling. We do not pursue this here.

The final design for example E1 can be obtained from matrix C11 and the submodels, and is shown
in Figure 7. If a language module were available, it would be expected to produce code, for example in
C++ or Java, directly from the design. Alternatively, developers can write the code, and then parse it
back and compare with the relational model for debugging. The operation is similar to a compiler’s,
because the code won’t “compile” until any bugs introduced by the developers have been fixed, except
that the compiler can only enforce the rules of a language while the RMC enforces the formal structure
of the program. Program P2, shown in Figure 7, is the C++ code corresponding to Program P1, Part
I, manually obtained from Design D2.

5.2 Example E1. Part II.

Example E1, Part II illustrates the following:

- multiplicity of solutions;
- refactoring object-oriented code;

The second part of Example E1 is based on Program P1 and its relational model matrix C0 of Figure
3, but it uses matrix C2, which was obtained from matrix C0 by encapsulating the pairs (vx, vy) and
(fx, fy). Matrix C2 is shown in Figure 8.

Matrix C2 describes two classes, G and V. Object g1 is an instance of class G, and CG1 is the class
constructor for class G. Objects v1, v2, v3, v4, v5, v6 and v7 are all instances of class V. Class V has
one constructor with 3 invocations, CV1, CV2, and CV3. Class V also has three methods, method WV
with the 3 invocations WV1, WV2, and WV3, method PV with 1 invocation PV1, and method QV
with the 2 invocations QV1 and QV2. Class V will immediately be recognized as the very well-known
class vector in two dimensions. Method WV is an overload of operator ‘*’ for the vector. It takes
a double and returns a vector. Method PV is an overload of operator ‘+’, which takes a vector and
returns another. And method QV is an overload of operator ‘+=’, which takes a vector and modifies
its object. Class vector is indeed the accepted standard for program P1. Matrix C2 corresponds to
design D3 (not shown), and to the C++ program Program P3, shown in Figure 8.

Program P2 is shorter than P3, reflecting the fact that similarity {d, a, b} is stronger than {vx, vy},
{fx, fy}. Both P2 and P3 are C++ refactorings of P1. Since P1 can be obtained from either P2 or

24 Sergio Pissanetzky

C2 =

g1 v1 v2 v3 v4 v5 v6 v7 literals
K O d a b r r v v f f t t t t t t t t 1 2 3 4 5 6 7 8 9

x y x y x y a b c d e f g h

| 1 = c 1 |
| 2 = c 1 | CG1

| 3 = c 1 |
| 4 = c 1 | CV1

| 5 = c 1 |
| 6 = c 1 | CV2

| 7 = c 1 |
| 8 = c 1 | CV3

| 9 = c 1 |
| 10 ∗ 1 2 c | WV1

| 11 ∗ 1 2 c |
| 12 ∗ 1 2 c | WV2

| 13 ∗ 1 2 c |
| 16 ∗ 1 2 c | WV3

| 17 ∗ 1 2 c |
| 14 + 1 2 c | PV1

| 15 + 1 2 c |
| 18 + m 2 | QV1

| 19 + m 2 |
| 20 + m 2 | QV2

| 21 + m 2 |

PROGRAM P3

main{
G g(1, 2, 3);
V r(4, 5);
V v(6, 7);
V f(8, 9);
V tab,tcd,tef,tgh;
tab = f.WV(g.a);
tcd = v.WV(g.d);
tgh = f.WV(g.b);
tef = tab.PV(tcd);
r.QV(tef);
v.QV(tgh);

}

Figure 8: Matrix C2, obtained from matrix C0 of Figure 3 by encapsulating the pairs (vx, vy), (fx,
fy). This matrix corresponds to design D3 (not shown). Also shown is the C++ program Program
P3, obtained from C2. This model has two classes, G and V. Class G has a constructor, and class V
has a constructor and 3 methods, WV, PV and QV. Program P3 is the C++ version of Program P1
of Example E1, Part II.

P3, the example amounts to a refactoring between P2 and P3. P2 and P3 are very different, and a
conversion between the two would be very difficult to accomplish using combinations of elementary
refactorings. P2 is better, but P3 is standard for problems of the type of Example E1. The reason is
outside of Example E1: the use of vectors becomes necessary when dealing with the rotation of rigid
bodies.

5.3 Example E2

This example illustrates the following:
- creating the RMC directly from business rules;
- refactoring an object-oriented design;
- using a very coarse granularity;
- using relational operations to induce refactorings;
- symmetry and commutativity of multiple-conditioned sequences, and
- model support for inheritance and polymorphism.

This is a good example of the kind of analysis that can be carried out with the help of an RMC model.
The example emphasizes the ability of the RMC to expose the inner structure of a program and help
the designer to make informed decisions. In this case, a source of serious confusion, that appears to
have remained unnoticed so far, is revealed. The problem statement is: calculate the cost to outfit
an aircraft model A, B or C to carry mail (M) or spray crops (S). A simple high-level analysis of this
problem indicates that the following services and control variables are needed:

- services AM, BM, CM determine the list of mail equipment for each of model A, B, or C.
- services AS, BS, CS determine the list of spray equipment for each of model A, B, or C.

A Model of Computation for Source Code Analysis and Transformations 25

- services MCost, SCost calculate the cost of mail or spray equipment.
- the control variables are: a (select M/S) and b (select A/B/C).

The execution algorithm should initialize a and b, call one of AM, BM, CM, AS, BS, or CS to determine
the list of equipment, and call one of MCost or SCost to determine the cost, passing the list. This
information is enough to create the RMC model, which is shown in Figure 9.

C =

O a b list cost a0 b0

| init c1 c2 a3 a4 |
| AM c1 |
| BM c1 |
| CM c1 |
| AS c1 |
| BS c1 |
| CS c1 |
| MCost a1 c2 |
| SCost a1 c2 |

Q =

A P a b F

| 1 init |
| init M A AM |
| init M B BM |
| init M C CM |
| init S A AS |
| init S B BS |
| init S C CS |
| AM MCost |
| BM MCost |
| CM MCost |
| AS SCost |
| BS SCost |
| CS SCost |
| MCost exit |
| SCost exit |

R

Figure 9: The relational model for Example E2, obtained directly from business rules. A relation R of
degree 4 with six tuples is marked in matrix Q.

The model is complete, but, before a design can be created, a decision must be made regarding the
implementation of the control variables in matrix Q (see discussion in Section 4.4). We would like to
produce designs that use combinations of conditional logic and single-inherited polymorphism (SIP).
SIP makes decisions based on a single condition. While it is possible to combine a and b and form a
single control variable suitable for SIP implementation, we will not explore that possibility. Instead,
we will modify matrix Q in such a way that the decisions controlled by a and b are made separately.
The process is similar to the transformation of Program A in Section 4.4 into Programs B and C, and
just as in Section 4.4, there are two different ways of doing it depending on which decision is made
first, a or b.

Let R be the relation of degree 4 indicated in matrix Q of Figure 9. We must transform R into
two relations that use a single control variable each. The relational operation that achieves that
goal is normalization. Normalization is a well known procedure [2]. R must be normalized. There
are two ways of doing it because R is unnormalized in both a and b, and order matters. We start by
normalizing domain a first. We note that a.ν = {M,S} and augment R with the new domain α = {1, 2}
containing foreign keys into a. Then, we project R on {P,A, α} and on {α, b, F}, respectively. The
result are relations R1 and R2, which have been substituted for R and shown in Figure 10 as part of
the normalized matrix Q12. R2 can still be normalized for b, but this will not be necessary. R1 and
R2 contain the same information as R. In fact, a join of R1 and R2 on R1.F = R2.P yields R. The
new keys in domain α are in fact two new fictitious “do-nothing” services introduced for convenience.

To normalize in the reverse order, starting with b.ν = {A,B,C}, we add the fictitious services
β = {3, 4, 5} as keys for domain b, and project R on {P, b, β} and {β, a, F}, respectively. The remaining
normalization with respect to a is superfluous. The result are relations R3 and R4, which we have
inserted into matrix Q34 and are identified in Figure 10. A join of R3 and R4 on R3.F = R4.P yields
R, as it should.

26 Sergio Pissanetzky

Q12 =

A P a b F

| 1 init |
| init M 1 |
| init S 2 |
| 1 A AM |
| 1 B BM |
| 1 C CM |
| 2 A AS |
| 2 B BS |
| 2 C CS |
| AM MCost |
| BM MCost |
| CM MCost |
| AS SCost |
| BS SCost |
| CS SCost |
| MCost exit |
| SCost exit |

R1

R2

Q34 =

A P a b F

| 1 init |
| init A 3 |
| init B 4 |
| init C 5 |
| 3 M AM |
| 3 S AS |
| 4 M BM |
| 4 S BS |
| 5 M CM |
| 5 S CS |
| AM MCost |
| BM MCost |
| CM MCost |
| AS SCost |
| BS SCost |
| CS SCost |
| MCost exit |
| SCost exit |

R3

R4

Figure 10: Two versions of matrix Q prepared for SIP or conditional implementations. Relations R1,
R2, R3 and R4, all of degree 3, are identified.

Matrix Q12 involves 3 different decisions, one based on values of a and two based on values of
b. If combinations of conditionals (C) and polymorphism (P) are used, then there are 8 possible
combinations: CCC, CCP, CPC, CPP, PCC, PCP, PPC, PPP.

In the case of Q34, the b-decision is made first, and there are 3 different a-decisions, resulting in 16
different combinations. In total, there are 24 possibilities (in Section 4.4 we assumed that the control
variables could only be true or false, but in this case b can have any of 3 values). Those combinations
represent different refactorings of the same program. Below, we show a few of them and illustrate
the major effect they have on the designs. Even if unlikely combinations such as CCP or CPC are
discarded, 8 choices still remain. In a large program, where many conditionals are involved in each
one of numerous logical decisions, this can lead to a very large number of choices. In contrast, if MIP
is prescribed, there is only one choice.

TOP

Document

Cost(a)
MCost
SCost

Mail

MCost(Document d)

Spray

SCost(Document d)

AModel

MCost{AM}
SCost{AS}

BModel

MCost{BM}
SCost{BS}

CModel

MCost{CM}
SCost{CS}

Figure 11: The design corresponding to case CPP of matrix Q12 for example E2.

The first design is similar to the running example in the Survey [14]. It corresponds to matrix Q12,
case CPP, and is shown in Figure 11. The services are provided by class Document. The caller instan-
tiates one of the Document-derived objects (equivalent to initializing b), and calls its Cost method,
passing a. Cost selects between MCost and SCost (the a-decision), then invokes the corresponding
polymorphic version (the b-decision), which executes the correct helper code to determine the list of

A Model of Computation for Source Code Analysis and Transformations 27

equipment, instantiates a Mail or Spray object, and calls its MCost or SCost method for the final cost
calculation, passing itself to make the list available to the method.

TOP

Document

MCost{this.accept(new Mail())}
SCost{this.accept(new Spray())}
accept(Visitor v)

Visitor

visitA(AModel d)

visitB(BModel d)
visitC(CModel d)

Mail

visitA(AModel d){AM′}
visitB(BModel d){BM′}
visitC(CModel d){CM′}

Spray

visitA(AModel d){AS′}
visitB(BModel d){BS′}
visitC(CModel d){CS′}

AModel

accept(Visitor v)

{v.visitA(this)}

BModel

accept(Visitor v)

{v.visitB(this)}

CModel

accept(Visitor v)

{v.visitC(this)}

Figure 12: The design corresponding to matrix Q34, case PPPP, of Example E2.

TOP

Document

ACost{this.accept(new AModel())}
BCost{this.accept(new BModel())}
CCost{this.accept(new CModel())}
accept(Visitor v)

Visitor

visitM(Mail d)

visitS(Spray d)

Mail

accept(Visitor v)

{v.visitM(this)}

Spray

accept(Visitor v)

{v.visitS(this)}

AModel

visitM(Mail d){AM′}
visitS(Spray d){AS′}

BModel

visitM(Mail d){BM′}
visitS(Spray d){BS′}

CModel

visitM(Mail d){CM′}
visitS(Spray d){CS′}

Figure 13: The design corresponding to matrix Q12, case PPP, for Example E2.

The second design is shown in Figure 12. Here, the caller instantiates one of the Document-derived
objects (equivalent to initializing b), and calls MCost or SCost, which create either a Mail or a Spray
object (equivalent to initializing a). Then, they call the generic accept method (the b-decision), passing
the Visitor object just created, and accept invokes the corresponding polymorphic version of visit* (the
a-decision). This design corresponds to matrix Q34, case PPPP, because the decisions are made in
the order ba and all four are polymorphic. It is important to note that a Visitor design pattern [59]
was used in the Survey [14] to obtain a similar design, by refactoring the running example, but the
transformation took 20 primitive refactorings (14, not counting the 6 renames), all at the level of the
OO code, to be compared with one relational operation on matrix Q34.

The last design, shown in Figure 13, is similar to the design of Figure 12, but with the roles of
model and task reversed. It is based on matrix Q12, case PPP, because the decisions are made in the
order ab and the a-decision and both b-decisions are polymorphic.

All three designs have flaws and are difficult to understand. The design of Figure 11 has mail
and spray functionality in all Document subclasses. An upgrade for passenger or cargo transportation
would require changes in all the subclasses, plus the addition of a new Passenger or Cargo class, making
it even more complex and less understandable. However, upgrading to a new aircraft model D requires
the addition of only one subclass. The design of Figure 12 has aircraft model functionality in all Visitor
subclasses. An upgrade to model D would require changes in all subclasses, plus the addition of a new

28 Sergio Pissanetzky

subclass to Document. Similar considerations apply to the design of Figure 13, where it is now easy
to upgrade to model D, but difficult to upgrade to passenger or cargo.

The use of patterns, as erroneously advocated in the literature [14], does not fix the problems, but
merely shifts them to another area. The source of the problems is the destruction of the inherent
fundamental symmetry between a and b present in the original matrix Q. When SIP was chosen for
implementation, we had to establish an arbitrary order between a and b by using matrices Q12 or Q23

instead of Q, and symmetry was lost.

6 Conclusions

We have formally presented the Relational Model of Computation (RMC) as a relational database
represented by two sparse matrices, where the tuples in the relations are in turn relational models. We
have proved the RMC to be a Turing-complete virtual machine, capable of emulating any executable
algorithm. We have, therefore, proposed the RMC as a model of computation and as a container for
source code. We have pressed the idea that, since the RMC has the characteristics of a matrix, a
database, a virtual machine, and a container for code, it shares in the properties of all four. Matrix
algebra and relational algebra can be directly applied, and languages such as SQL or Tutorial D [53],
or WSL, can be considered. We have presented examples that illustrate the mechanics of the model
and some ideas for analyses that can be performed.

Modeling is done by design, not by theory. The modeler must decide which features are important
for the problem at hand, and design the model to make them available and easy to handle. A container
for source code must be based on a model that is sufficiently flexible and general to allow algorithm
designers to represent the features of their choice, to the extent and with the detail they need.

To serve as a container for source code, and in addition to its ability to emulate algorithms engaged
in the analysis and transformation of the code, the RMC must be able to model the source code. Being
a database, the RMC is ideally positioned for that task. There is no known type of data that can
not be represented and handled by a relational database, and techniques for database design are well
known. Any information that can be represented in a text document such as source code can certainly
be represented in a relational database. Labeled graph representations, such as the ones used for
graph rewriting, including CFGs, ASTs and data flow diagrams, discussed in section 4.3, and various
other types of representations such as parsed code, token classes, three-address code, single static
assignments, and intermediate code representations (IR), used for source code with success, can as
well be represented in a database. UML designs and other diagrams can be modelled. Many program
entities are directly built into the structure of the RMS. Such is the case for user types, subtypes,
single and multiple type inheritance, and several OO entities mentioned in Section 4.5. Hierarchical
features extensively used in programs can be described with submodelling.

Traditionally, databases have not been associated with the execution of programs or used to emulate
algorithms. The present work demonstrates that databases can do that too. In particular, algorithms
that transform or analyze source code can be emulated. The ability of the RMC to represent source
code entities with the desired degree of detail, emulate the algorithms that operate on them, and
handle large volumes of information, makes the RMC a very attractive container for source code.
Emulation of algorithms includes compilers, optimizers, editors and interpreters as well. Using the
RMC for compiler optimizations at the same time it is used for source code evolution and analysis,
has interesting implications. The RMC becomes the formal repository of the program, and the source
code remains as a means for developer-program communication. By separating the communications
hub from the formal repository, both can be separately optimized.

In closing, we would like to restate that Equation (1) formally separates the structure of a program,
defined by matrices C and Q, from the data of the program, defined by the elements of the two matrices.
The concept opens an avenue for research into the design of formal algorithms that use the known

A Model of Computation for Source Code Analysis and Transformations 29

structure to operate on the data and transform the program in a mathematically rigorous manner, and
communicate with each other through the common RMC interface. The unified approach will promote
the development of tools with full capabilities and interoperability, and enhance coherence in program
transformation and evolution. These subjects, as well as other areas that currently fall beyond regular
computation, are of great interest to us and the possible subjects of our future research.

Biography

Sergio Pissanetzky (born August 9, 1936, Buenos Aires) is an Argentinian physicist mainly active
in the United States. He began his studies at Universidad Nacional de La Plata and continued at
Universidad Nacional de Cuyo, graduating with a Ph.D. in Physics in 1965. He was a Professor of
Physics at Universidad Nacional de Buenos Aires, Universidad Nacional de Córdoba, and Universidad
Nacional de Cuyo, and a Research Scientist at Comisión Nacional de la Enerǵıa Atómica. Dissatisfied
with the political climate of his country, he chose to emigrate. In 1984, in the United States, he joined
the Superconducting Supercollider federal project as a Research Scientist, and later, the Graduate
School of Physics at Texas A&M University as a Professor of Physics. After a rewarding career as a
Scientist, Professor, Entrepreneur, and Consultant, Dr. Pissanetzky retired in 2000.

Dr. Pissanetzky has served as a Member of the Editorial Board of the International Journal for
Computation in Electrical and Electronic Engineering, as a Member of the Advisory Committee of
the International Journal Métodos Numéricos para Cálculo y Diseño en Ingenieŕıa, and as a member
of the International Committee for Nuclear Resonance Spectroscopy, Tokyo, Japan. He has also
held positions as a Research Scientist with the Houston Advanced Research Center, as Chairman of
the Computer Center of the Atomic Energy Commission, Bariloche, Argentina, and as a Scientific
Consultant at Brookhaven National Laboratory and Los Alamos National Laboratory. He was the
founder of Magnus Software Corporation, where he focused on development of specialized applications
for the Magnetic Resonance Imaging (MRI) and the High Energy Particle Accelerator industries.

Dr. Pissanetzky holds several US and European patents and is the author of three books and many
peer reviewed scientific and technical papers. He now lives in a quite suburban neighborhood in Texas,
where he spends much of his time doing what he loves: research.

References

[1] Matthew H. Austern. Generic Programming and the STL: Using and Extending the C++ Standard
Template Library. Addison-Wesley Professional, Boston, Massachusetts, 1st edition, October 1998.

[2] E. F. Codd. A relational model of data for large shared data banks. Comm. ACM, 13(6):377–387,
1970.

[3] Michael J. Wester (editor), editor. Computer Algebra Systems - A Practical Guide. Wiley, Chich-
ester, 1999.

30 Sergio Pissanetzky

[4] Donald E. Knuth. The Art of Computer Programming, volume Vol. 2: Seminumerical Algorithms.
Addison-Wesley, 1998.

[5] Christian Bauer, Alexander Frink, and Richard Kreckel. Introduction to the GiNaC framework
for symbolic computation within the C++ programming language. J. Symbolic Computation,
(33):1–12, 2002.

[6] Jia Liu, Don Batory, and Christian Lengauer. Feature oriented refactoring of legacy applications.
Proc 28th international conference on Software engineering. Shanghai, China, pages 112–121,
2006.

[7] Harold Thimbleby. User interface design with matrix algebra. ACM Transactions on Computer-
Human Interaction (TOCHI), pages 181–236, 2004.

[8] C. Böhm and G. Jacopini. Flow diagrams, Turing machines, and languages with only two forma-
tion rules. Communications of the ACM, 9(5):266, May 1966.

[9] Zhenchang Xing and Eleni Stroulia. Refactoring practice: How it is and how it should be supported
- an Eclipse case study. 22nd IEEE International Conf. on Software Maintenance (ICSM’06),
2006.

[10] Curtis Schofield, Brendan Tansey, Zhenchang Xing, and Eleni Stroulia. Digging the development
dust for refactorings. Proc. 14th IEEE Int. Conf. on Program Comprehension (ICPC’06), 00:23–
34, June 2006.

[11] Suzanne Smith, Sara Stoecklin, and Catharina Serino. An innovative approach to teaching refac-
toring. Proc. 37th SIGCSE Technical Symposium on Computer Science Education SIGCSE ’06,
38(1), March 2006.

[12] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois
at Urbana-Champaign, Department of Computer Science, 1992.

[13] Martin Fowler. Improving the Design of Existing Code. Addison-Wesley Professional, Boston,
Massachusetts, 1999.

[14] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Transactions on Software
Engineering, 30(2):126–139, February 2004.

[15] J. Rajesh and D. Janakiram. JIAD: a tool to infer design patterns in refactoring. Proc 6th
ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming.
Verona, Italy, pages 227–237, 2004.

[16] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin. Automated support for program
refactoring using invariants. Proc. Int. Conf. Software Maintenance, pages 736–746, 2001.

[17] Tom Mens, Niels Van Eetvelde, Serge Demeyer, and Dirk Janssens. Formalizing refactorings with
graph transformations. Journal of Software Maintenance and Evolution: Research and Practice,
17(4):247–276, July 2005.

[18] Tom Mens, Gabi Taentzer, and Olga Runge. Analysing refactoring dependencies using graph
transformation. Software Systems Modeling (SoSyM), 2006.

[19] Mathieu Verbaere, Ran Ettinger, and Oege de Moor. JunGL: a scripting language for refactoring.
Proc 28th International Conference on Software Engineering. Shanghai, China, pages 172–181,
2006.

A Model of Computation for Source Code Analysis and Transformations 31

[20] Mark O’Keeffe and Mel Ó Cinnéide. Search-based software maintenance. Proc. Conf. on Software
Maintenance and Reengineering CSMR ’06, pages 249–260, March 2006.

[21] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented design. IEEE
Trans. Software Engineering, 20(6):476–493, 1994.

[22] Martin Hitz and Behzad Montazeri. Chidamber and Kemerer’s metrics suite: A measurement
theory perspective. IEEE Trans. on Software Engineering, 22(4):267–271, April 1996.

[23] F. Simon, F. Steinbrückner, and C. Lewerentz. Metrics based refactoring. Proc. European Conf.
Software Maintenance and Reeng., pages 30–38, 2001.

[24] M. Lanza and S. Ducasse. Understanding software evolution using a combination of software
visualization and software metrics. Proc. Langages et Modèles à Objects, pages 135–149, August
2002.

[25] Serge Demeyer. Maintainability versus performance: What’s the effect of introducing polymor-
phism? Technical report, Lab. on Reeng., Universiteit Antwerpen, Belgium, 2002.

[26] M. V. Ksenzov. Architectural refactoring of corporate program systems. Programming and Com-
puting Software., 32(1):31–43, January 2006.

[27] M. Bauer and M. Trifu. Architecture-aware adaptive clustering of OO systems. Proceedings of the
Eighth European Conference on Software Maintenance and Reengineering, 2004. (CSMR 2004),
pages 3–14, March 2004.

[28] Ran Ettinger and Mathieu Verbaere. Untangling: a slice extraction refactoring. Proc 3rd In-
ternational Conference on Aspect-oriented Software Development. Lancaster, UK, pages 93–101,
2004.

[29] Jan Hannemann, Gail C. Murphy, and Gregor Kiczales. Role-based refactoring of crosscutting
concerns. Proc 4th international Conference on Aspect-oriented Software Development. Chicago,
Illinois, pages 135–146, 2005.

[30] Mirko Streckenbach and Gregor Snelting. Refactoring class hierarchies with KABA. Proc 19th
annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications. Vancouver, BC, Canada, pages 315–330, 2004.

[31] Marius Marin, Leon Moonen, and Arie van Deursen. An approach to aspect refactoring based
on crosscutting concern types. Proc 2005 Workshop on Modeling and Analysis of Concerns in
Software. St. Louis, Missouri, pages 1–5, 2005.

[32] Alejandra Garrido and Ralph Johnson. Challenges of refactoring C programs. Proc International
Workshop on Principles of Software Evolution. Orlando, Florida, pages 6–14, 2002.

[33] Michel Dagenais, Ettore Merlo, Bruno Lagu, and Daniel Proulx. Clones occurence in large object
oriented software packages. Proc. 1998 Conf. of the Centre for Advanced Studies on Collaborative
Research. Toronto, Ontario, Canada, page 10, November 1998.

[34] Salah Bouktif, Giuliano Antoniol, Ettore Merlo, and Markus Neteler. A novel approach to optimize
clone refactoring activity. Proc.8th Annual Conf. on Genetic and Evolutionary Computation.
Seattle, Washington, USA, pages 1885 – 1892, July 2006.

[35] Hamid Abdul Basit, Damith C. Rajapakse, and Stan Jarzabek. Beyond templates: a study of
clones in the STL and some general implications. Proc. 27th Int. Conf. on Software Engineering.
St. Louis, MO, USA, pages 451 – 459, May 2005.

32 Sergio Pissanetzky

[36] Ira D. Baxter, Andrew Yahin, Leonardo de Moura, Marcelo Sant’Anna, and Lorraine Bier. Clone
detection using abstract syntax trees. Proc. Int. Conf. on Software Maintenance, ICSM’98, pages
368–377, March 1998.

[37] James R. Cordy. Comprehending reality - practical barriers to industrial adoption of software
maintenance automation (keynote). Proc. 11th IEEE Int. Workshop on Program Comprehension
(IWPC’03), page 196, 2003.

[38] M. Balazinska, E. Merlo, N. Dagenais, B. Laguë, and K. Kontogiannis. Advanced clone-analysis
to support object-oriented system refactoring. Proc. Working Conf. Reverse Eng., pages 98–107,
2000.

[39] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. ARIES: Refactoring
support tool for code clone. Proc. Third Workshop on Software Quality. St. Louis, Missouri,
USA, pages 1 – 4, May 2005.

[40] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a multilinguistic token-
based code clone detection system for large scale source code. IEEE Transactions on Software
Engineering, 28(7):654–670, July 2002.

[41] Jens Krinke. Identifying similar code with program dependence graphs. Proceedings of the Eighth
Working Conference on Reverse Engineering (WCRE’01), pages 301–309, October 2001.

[42] Stephane Ducasse, Oscar Nierstrasz, and Matthias Rieger. Lightweight detection of duplicated
code. A language-independent approach. IAM-04-02, pages 1–30, February 2004.

[43] L. Tokuda and D. Batory. Evolving object-oriented designs with refactorings. Automated Software
Eng., 8:89–120, 2001.

[44] Jean-Marie Favre. Preprocessors from an abstract point of view. Proc. International Conf. on
Software Maintenance, pages 329–338, November 1996.

[45] Diomidis Spinellis. Global analysis and transformations in preprocessed languages. IEEE Trans.
Software Eng., 29(11):1019–1030, November 2003.

[46] B. McCloskey and E. Brewer. ASTEC: a new approach to refactoring C. Proc. 10th. European
Software Engng. Conf., Lisbon, Portugal, pages 21–30, 2005.

[47] M. P. Ward and K. H. Bennett. Formal methods to aid the evolution of software. Int. J. Software
Eng. and Knowledge Eng., 5(1):25–47, 1995.

[48] James E. Smith and Ravi Nair. Virtual Machines. Versatile Platforms for Systems and Processes.
Morgan Kaufmann. Amsterdam, 2005.

[49] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes. Information
and Computation, 100(1):1–77, September 1992.

[50] Robin Milner. Functions as processes. Mathematical Structures in Computer Science, 2:119–141,
1992.

[51] M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi calculus. Information
and Computation, Vol 148, pp. 1-70, 1999, 148:1–70, 1999.

[52] Sergio Pissanetzky. Sparse Matrix Technology. Academic Press, London, 1984.

A Model of Computation for Source Code Analysis and Transformations 33

[53] C. J. Date and H. Darwen. Databases, Types, and the Relational Model. The Third Manifesto.
Addison-Wesley, Reading, Massachusetts, third edition, 2006.

[54] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Company, Boston,
Massachusetts, 1997.

[55] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensitivity for
points-to analysis for Java. ACM Trans. Softw. Eng. Methodol., 14(1):1–41, 2005.

[56] Frances E. Allen. Control flow analysis. ACM SIGPLAN Notices, Proceedings of a symposium on
Compiler optimization, Urbana-Champaign, Illinois, 1970, 5(7):1–19, 1970.

[57] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. Proceedings of the 2004 International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, March 2004, 2004.

[58] Sergio Pissanetzky. Refactoring with Relations. A new Method for Refactoring Object-Oriented
Software. SciControls.com, Texas, USA, July 2006.

[59] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Languages and Systems. Addison Wesley, 1994.

