TECHNOLOGY

electronic edition

Sergio Pissanetzky

Sparse Matrix Technology electronic edition

Copyright © 2007 by Sergio Pissanetzky and SciControls.com. All rights reserved. No part of the contents of this book can be reproduced without the written permission of the publisher.

Professionally typeset by $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$. This work is in compliance with the mathematical typesetting conventions established by the International Organization for Standardization (ISO).

Dr. Pissanetzky retired after a rewarding career as an Entrepreneur, Professor, Research Scientist and Consultant. He was the founder of Magnus Software Corporation, where he focused on development of specialized applications for the Magnetic Resonance Imaging (MRI) and the High Energy Particle Accelerator industries. He has served as Member of the International Editorial Board of the "International Journal for Computation in Electrical and Electronic Engineering", as a Member of the International Advisory Committee of the International Journal "Métodos Numéricos para Cálculo y Diseño en Ingeniería", and as a member of the International Committee for Nuclear Resonance Spectroscopy, Tokyo, Japan. Dr. Pissanetzky has held professorships in Physics at Texas A\&M University and the Universities of Buenos Aires, Córdoba and Cuyo, Argentina. He has also held positions as a Research Scientist with the Houston Advanced Research Center, as Chairman of the Computer Center of the Atomic Energy Commission, San Carlos de Bariloche, Argentina, and as a Scientific Consultant at Brookhaven National Laboratory. Dr. Pissanetzky holds several US and European patents and is the author of two books and numerous peer reviewed technical papers. Dr. Pissanetzky earned his Ph.D. in Physics at the Balseiro Institute, University of Cuyo, in 1965. Dr. Pissanetzky has 35 years of teaching experience and 30 years of programming experience in languages such as Fortran, Basic, C and C++. Dr. Pissanetzky now lives in a quite suburban neighborhood in Texas.

Website: http://www.SciControls.com

Contents

Preface xiii
Introduction 1
1 Fundamentals 5
1.1 Introduction 5
1.2 Storage of arrays, lists, stacks and queues 5
1.3 Storage of lists of integers 8
1.4 Representation and storage of graphs 10
1.5 Diagonal storage of band matrices 12
1.6 Envelope storage of symmetric matrices 14
1.7 Linked sparse storage schemes 15
1.8 The sparse row-wise format 19
1.9 Ordered and unordered representations 20
1.10 Sherman's compression 22
1.11 Storage of block-partitioned matrices 24
1.12 Symbolic processing and dynamic storage schemes 26
1.13 Merging sparse lists of integers 28
1.14 The multiple switch technique 29
1.15 Addition of sparse vectors with the help of an expanded real accumulator 30
1.16 Addition of sparse vectors with the help of an expanded integer array of pointers 32
1.17 Scalar product of two sparse vectors with the help of an array of pointers 33
2 Linear Algebraic Equations 35
2.1 Introduction 35
2.2 Some definitions and properties 37
2.3 Elementary matrices and triangular matrices 40
2.4 Some properties of elementary matrices 41
2.5 Some properties of triangular matrices 42
2.6 Permutation matrices 44
2.7 Gauss elimination by columns 45
2.8 Gauss elimination by rows 49
2.9 Gauss-Jordan elimination 50
2.10 Relation between the elimination form of the inverse and the product form of the inverse 52
2.11 Cholesky factorization of a symmetric positive definite matrix 53
2.12 Practical implementation of Cholesky factorization 55
2.13 Forward and backward substitution 56
2.14 Cost considerations 57
2.15 Numerical examples 59
3 Numerical Errors in Gauss Elimination 63
3.1 Introduction 63
3.2 Numerical errors in floating point operations 65
3.3 Numerical errors in sparse factorization 68
3.4 Numerical errors in sparse substitution 73
3.5 The control of numerical errors 77
3.6 Numerical stability and pivot selection 78
3.7 Monitoring or estimating element growth 82
3.8 Scaling 83
4 Ordering for Gauss Elimination: Symmetric Matrices 85
4.1 Introduction: Statement of the problem 85
4.2 Basic notions of graph theory 87
4.3 Breadth-first search and adjacency level structures 93
4.4 Finding a pseudoperipheral vertex and a narrow level structure of a graph 95
4.5 Reducing the bandwidth of a symmetric matrix 96
4.6 Reducing the profile of a symmetric matrix 98
4.7 Graph-theoretical background of symmetric Gauss elimination 101
4.8 The minimum degree algorithm 104
4.9 Tree partitioning of a symmetric sparse matrix 109
4.10 Nested dissection 113
4.11 Properties of nested dissection orderings 118
4.12 Generalized nested dissection 121
4.13 One-way dissection of finite element problems 122
4.14 Orderings for the finite element method 127
4.15 Depth-first search of an undirected graph 132
4.16 Lexicographic search 136
4.17 Symmetric indefinite matrices 140
5 Ordering for Gauss Elimination: General Matrices 143
5.1 Introduction: Statement of the problem 143
5.2 Graph theory for unsymmetric matrices 146
5.3 The strong components of a digraph 148
5.4 Depth-first search of a digraph 151
5.5 Breadth-first search of a digraph and directed adjacency level structures 155
5.6 Finding a maximal set of vertex disjoint paths in an acyclic digraph 157
5.7 Finding a transversal: the algorithm of Hall 158
5.8 Finding a transversal: the algorithm of Hopcroft and Karp 161
5.9 The algorithm of Sargent and Westerberg for finding the strong components of a digraph 167
5.10 The algorithm of Tarjan for finding the strong components of a digraph 168
5.11 Pivoting strategies for unsymmetric matrices 172
5.12 Other methods and available software 175
6 Sparse Eigenanalysis 177
6.1 Introduction 177
6.2 The Rayleigh quotient 180
6.3 Bounds for eigenvalues 182
6.4 The bisection method for eigenvalue calculations 184
6.5 Reduction of a general matrix 185
6.6 Reduction of a symmetric band matrix to tridiagonal form 188
6.7 Eigenanalysis of tridiagonal and Hessenberg matrices 189
6.8 Direct and inverse iteration 190
6.9 Subspaces and invariant subspaces 193
6.10 Simultaneous iteration 196
6.11 Lanczos algorithm 199
6.12 Lanczos algorithm in practice 203
6.13 Block Lanczos and band Lanczos algorithms 206
6.14 Trace minimization 208
6.15 Eigenanalysis of hermitian matrices 209
6.16 Unsymmetric eigenproblems 210
7 Sparse Matrix Algebra 211
7.1 Introduction 211
7.2 Transposition of a sparse matrix 213
7.3 Algorithm for the transposition of a general sparse matrix 215
7.4 Ordering a sparse representation 216
7.5 Permutation of rows or columns of a sparse matrix: First procedure 217
7.6 Permutation of rows or columns of a sparse matrix: Second procedure 218
7.7 Ordering of the upper representation of a sparse symmetric matrix 218
7.8 Addition of sparse matrices 219
7.9 Example of addition of two sparse matrices 220
7.10 Algorithm for the symbolic addition of two sparse matrices with N rows and M columns 222
7.11 Algorithm for the numerical addition of two sparse matrices with N rows 223
7.12 Product of a general sparse matrix by a column vector 224
7.13 Algorithm for the product of a general sparse matrix by a full column vector 225
7.14 Product of a row vector by a general sparse matrix. 226
7.15 Example of product of a full row vector by a general sparse matrix. 226
7.16 Algorithm for the product of a full row vector by a general sparse matrix. 227
7.17 Product of a symmetric sparse matrix by a column vector. 228
7.18 Algorithm for the product of a symmetric sparse matrix by a full column vector 229
7.19 Multiplication of sparse matrices 230
7.20 Example of product of two matrices which are stored by rows. 231
7.21 Algorithm for the symbolic multiplication of two sparse matrices given in row-wise format 233
7.22 Algorithm for the numerical multiplication of two sparse matrices given in row-wise format 234
7.23 Triangular factorization of a sparse symmetric matrix given in row-wise format 235
7.24 Numerical triangular factorization of a sparse symmetric matrix given in row-wise format 238
7.25 Algorithm for the symbolic triangular factorization of a symmetric sparse matrix A 240
7.26 Algorithm for the numerical triangular factorization of a symmetric positive definite sparse matrix A 242
7.27 Example of forward and backward substitution 245
7.28 Algorithm for the solution of the system $\mathrm{U}^{T} \mathrm{DUx}=\mathbf{b}$ 246
8 Connectivity and Nodal Assembly 249
8.1 Introduction 249
8.2 Boundary conditions for scalar problems 251
8.3 Boundary conditions for vector problems 252
8.4 Example of a connectivity matrix 256
8.5 Example of a nodal assembly matrix 257
8.6 Algorithm for the symbolic assembly of a symmetric nodal assembly matrix 259
8.7 Algorithm for the numerical assembly of an element matrix and vector into the nodal assembly matrix A and right-hand vector b: Symmetric case 261
8.8 Algorithm for the numerical assembly of an element matrix and vector into the nodal assembly matrix A and right-hand vector \mathbf{b} : General case 264
9 General Purpose Algorithms 267
9.1 Introduction 267
9.2 Multiplication of the inverse of a lower triangular matrix by a general matrix 268
9.3 Algorithm for the symbolic multiplication of the inverse of a lower triangular matrix U^{-T} by a general matrix B 269
9.4 Algorithm for the numerical multiplication of the inverse of a lower triangular matrix U^{-T} by a general matrix B 270
9.5 Algorithm for the multiplication of the inverse of an upper triangular unit diagonal matrix U by a full vector \mathbf{x} 272
9.6 Algorithm for the multiplication of the transpose inverse of an upper triangular unit diagonal matrix U by a full vector 273
9.7 Solution of linear equations by the Gauss-Seidel iterative method 274
9.8 Algorithm for the iterative solution of linear equations by the Gauss-Seidel method 275
9.9 Checking the representation of a sparse matrix 276
9.10 Printing and displaying a sparse matrix 277
9.11 Algorithm for transforming a $R R(C) U$ of a symmetric matrix into a $R R(U) U$ of the same matrix 278
9.12 Algorithm for the pre-multiplication of a sparse matrix A by a diagonal matrix D 279
9.13 Algorithm for copying a sparse matrix from IA, JA, AN to IB, JB, BN 279
Bibliography and Index 281

Preface to the Electronic Edition

This is an electronic edition of the classic book Sparse Matrix Technology by Sergio Pissanetzky, originally published in English by Academic Press, London, in 1984, and later translated into Russian and published by MIR, Moscow, in 1988. The electronic edition has been typed from the original, with only minor changes of format where dictated by electronics.

Preface

As computers grow in power and speed, matrices grow in size. In 1968, practical production calculations with linear algebraic systems of order 5,000 were commonplace, while a "large" system was one of order 10,000 or more. ${ }^{\text {a }}$

In 1978, an over determined problem with 2.5 million equations in 400,000 unknowns was reported $;$ b in 1981, the magnitude of the same problem had grown: it had $6,000,000$ equations, still in 400,000 unknowns. ${ }^{\text {c }}$ The matrix of coefficients had 2.4×10^{12} entries, most of which were zero: it was a sparse matrix. A similar trend toward increasing size is observed in eigenvalue calculations, where a "large" matrix is one of order 4,900 or $12,000 .{ }^{\text {d }}$ Will matrix problems continue to grow even further? Will our ability to solve them increase at a sufficiently high rate?

But this is only one side of the question. The other side concerns the microcomputer explosion. Microcomputers now have about the same power as large computers had two decades ago. Are users constrained to solving matrix problems of the same size as those of twenty years ago?

The owner of a microcomputer may not care too much about the cost of computation; the main difficulty is storage. On a large machine, the cost of solving a matrix problem increases rapidly if the size of the problem does, because both storage and labor grow. The overall cost becomes a primary consideration. How can such cost be minimized for a given problem and installation?

Answers to these and other related questions are given in this book for the following classes of matrix problems: direct solution of sparse linear algebraic equations, solution of sparse standard and generalized eigenvalue problems, and sparse matrix algebra. Methods are described which range from very simple yet surprisingly effective ideas to highly sophisticated algorithms. Sparse matrix technology is now a well established discipline, which was defined as "the art of handling sparse matrices" . ${ }^{\text {e }}$ It is composed of a beautiful blend of theoretical developments, numerical experience and practical considerations. It is not only an important computational tool in a broad spectrum

[^0]of computational areas, ${ }^{\mathrm{f}}$ but also is in itself a valuable contribution to the general development of computer software. The new ideas developed during the last fifteen years were used to devise nearly optimum algorithms for a variety of matrix problems. Research in the field is currently very active and the spectrum of applications broadens continuously. Sparse matrix technology is here and will stay.

The concept expressing the nature of our concern is contained in the title of the book. Technology is applied science, the science or study of the practical or industrial arts. ${ }^{9}$ The phrase "sparse matrix technology" was an everyday saying in the early nineteen seventies at the IBM T. J. Watson Research Center. ${ }^{\text {h }}$ Nowadays it seems to be in desuetude. The material for the book was selected from the several Symposia and Congresses on large matrix problems regularly held since $1968 .{ }^{\text {i }}$ Major sources of inspiration were: an advanced course with four review articles, ${ }^{\text {j }}$ excellent survey articles ${ }^{\mathrm{k}}$ and books, ${ }^{1}$ a collection of papers, ${ }^{\mathrm{m}}$ and many publications which are cited where pertinent. Several basic ideas can be found in the literature published before 1973. ${ }^{\text {n }}$ No attempt is made, however, to cover such an important amount of material. Rather, the fundamental methods and procedures are introduced and described in detail, the discussion reaching the point where the reader can understand the specialized literature on each subject. A unified treatment is provided whenever possible, although, like any field of human knowledge which grows fast, sparse matrix technology has grown unevenly. Some areas are well developed, while other areas lack further research. We have not included proofs of all the theorems, except when they are closely related to practical techniques which are used subsequently. The concepts and methods are introduced at an elementary level, in many cases with the help of simple examples. Many fundamental algorithms are described and carefully discussed. Ready-to-use very efficient and professional algorithms are given in Fortran. The reader is assumed to be familiar with this popular language. The algorithms, however, are explained so clearly that even a person with a limited knowledge of Fortran can understand them and eventually translate them into other languages. Linear algebra and graph theory are used extensively in the book. No particular acquaintance with these subjects is necessary because all definitions and properties are introduced from the beginning, although some preparation

[^1]may be helpful. An extensive bibliography and a survey of the relevant literature are included in many sections. The book fills the gap between books on the design of computer algorithms and specialized literature on sparse matrix techniques, on the one side, and user needs and application oriented requirements on the other.

The purpose of the book is to bring sparse matrix technology within reach of engineers, programmers, analysts, teachers and students. This book will be found helpful by everyone who wishes to develop his own sparse matrix software, or who is using it and wishes to understand better how it operates, or who is planning to acquire a sparse matrix package and wishes to improve his understanding of the subject. Teachers who need an elementary presentation of sparse matrix methods and ideas and many examples of application at a professional level, will find such material in this book.

Chapter 1 covers all fundamental material such as storage schemes, basic definitions and computational techniques needed for sparse matrix technology. It is very convenient to read at least Sections 1 to 9 and Section 12 of Chapter 1 first. The first reading may, however, be superficial. The reader will feel motivated to examine this material in more detail while reading other chapters of the book, where numerous references to sections of Chapter 1 are found.

Chapters 2 to 5 deal with the solution of linear algebraic equations. They are not independent. The material in Chapter 2 is rather elementary, but its form of presentation serves as an introduction for Chapters 4 and 5 , which contain the important material. Chapter 3 deals with numerical errors in the case where the linear system is sparse, and also serves as an introduction to Chapters 4 and 5 . This material is not standard in the literature. Sparse matrix methods and algorithms for the direct solution of linear equations are presented in Chapters 4 and 5. Chapter 4 deals with symmetric matrices, and Chapter 5 with general matrices.

The calculation of eigenvalues and eigenvectors of a sparse matrix, or of a pair of sparse matrices in the case of a generalized eigenvalue problem, is discussed in Chapter 6. Chapter 6 can be read independently, except that some references are made to material in Chapters 1 and 7.

Chapters 7, 8 and 9 deal with sparse matrices stored in row-wise format. Algorithms for algebraic operations, triangular factorization and back substitution are explicitly given in Fortran and carefully discussed in Chapter 7. The material in Chapter 1 is a prerequisite, particularly Sections 8, 9 and 10 and 12 to 17. In addition, Chapter 2 is a prerequisite for Sections 23 to 28 of Chapter 7. Chapter 8 covers the sparse matrix techniques associated with mesh problems, in particular with the finite element method, and in Chapter 9 we present some general purpose Fortran algorithms.

Sparse matrix technology has been applied to almost every area where matrices are employed. Anyone interested in a particular application may find it helpful to read the literature where the application is described in detail, in addition to the relevant chapters of this book. A list of bibliographical references sorted by application was published ${ }^{\circ}$ and many papers describing a

[^2]variety of applications can be found in the Proceedings of the 1980 IMA Conference ${ }^{\mathrm{p}}$ and in other publications ${ }^{\mathrm{q}}$

Good, robust sparse matrix software is now commercially available. The Sparse Matrix Software Catalog ${ }^{\mathrm{r}}$ lists more than 120 programs. Many subroutines are described in the Harwell Catalogue ${ }^{\mathrm{s}}$ and two surveys have also been published. ${ }^{\mathrm{t}}$ Producing a good piece of sparse matrix software is not an easy task. It requires expert programming skills. As in any field of engineering, the software designer must build a prototype, test it carefully ${ }^{\mathrm{u}}$ and improve it before the final product is obtained and mass production starts. In software engineering, mass production is equivalent to obtaining multiple copies of a program and implementing them in many different installations. This requires transportability. From the point of view of the user, the software engineer must assume responsibility for choosing the right program and file structures and installing them into the computer. For the user, the product is not the program but the result. The desirable attributes of a good program are not easily achieved. ${ }^{\mathrm{v}}$ In this book, the characteristics and availability of software for each particular application are discussed in the corresponding sections.

I would like to acknowledge the collaboration of Neil Callwood. He has read the manuscript several times, correcting many of my grammatical infelicities, and is responsible for the "British flavour" that the reader may find in some passages. I would also like to acknowledge the patience and dedication Mrs. Carlota R. Glücklich while typing the manuscript and coping with our revisions.

January 1984
Sergio@SciControls.com

```
\({ }^{\mathrm{p}}\) Duff, 1981b. \({ }^{61}\)
\({ }^{9}\) Bunch and Rose, 1976; \({ }^{28}\) Duff and Stewart, 1979. \({ }^{68}\)
\({ }^{\mathrm{r}}\) Heath, 1982. \({ }^{126}\)
\({ }^{\mathrm{s}}\) Hopper, \(1980 .{ }^{130}\)
\({ }^{\text {t }}\) Duff, 1982; \({ }^{62}\) Parlett, 1983. \({ }^{176}\)
\({ }^{\text {u }}\) Duff, 1979; \({ }^{57}\) Eisenstat et al. 1979; \({ }^{75}\) Duff et al. 1982. \({ }^{69}\)
\({ }^{\text {v }}\) Gentleman and George, 1976; \({ }^{87}\) Silvester, 1980. \({ }^{215}\)
```

$$
\left.\mathrm{A}=\begin{array}{c|cccc}
1 & 2 & 3 & 4 & 5 \\
1 & A_{11} & & A_{13} & A_{14} \\
2 & & & A_{22} & \\
3 & & & & A_{25} \\
4 & & & & A_{35} \\
5 & & \text { symmetric } & & A_{44}
\end{array} \right\rvert\,
$$

Figure 1.4: Larcombe's version of Knuth's storage scheme for symmetric matrices with no zero elements on the diagonal.

1.8 The sparse row-wise format

The sparse row-wise format (Chang, 1969; ${ }^{29}$ Curtis and Reid, 1971b; ${ }^{46}$ Gustavson, 1972^{112}) to be described here is one of the most commonly used storage schemes for sparse matrices. The scheme has minimal storage requirements and at the same time it has proved to be very convenient for several important operations such as addition, multiplication, permutation and transposition of sparse matrices, the solution of linear equations with a sparse matrix of coefficients by either direct or iterative methods, etc. In this scheme, the values of the nonzero elements of the matrix are stored by rows, along with their corresponding column indices, in two arrays, say AN and JA, respectively. An array of pointers, say IA, is also provided to indicate the locations in AN and JA where the description of each row begins. An extra entry in IA contains a pointer to the first empty position in JA and AN. An example is convenient at this point. Consider the matrix:

$$
A=\begin{aligned}
& \\
& 1 \\
& 2
\end{aligned} \left\lvert\, \begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
0 & 0 & 1 . & 3 . & 0 & 0 & 0 & 5 . & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 7 . & 0 & 1 . & 0 & 0
\end{array}\right.
$$

A is represented as follows:

$$
\begin{array}{rlllllll}
& 1 & 2 & 3 & 4 & 5 & 6 & \\
\mathrm{IA} & = & 1 & 4 & 4 & 6 & & \\
\mathrm{JA} & = & 3 & 4 & 8 & 6 & 8 & \operatorname{RR}(\mathrm{C}) \mathrm{O} \\
\mathrm{AN} & = & 1 . & 3 . & 5 . & 7 . & 1 . &
\end{array}
$$

The description of row 1 of A begins at the position $\mathrm{IA}(1)=1$ of AN and JA. Since the description of row 2 begins at $\mathrm{IA}(2)=4$, this means that row 1 of A is described in positions 1,2 and 3 of AN and JA. In this example:
$\mathrm{IA}(1)=1$ first row begins at $\mathrm{JA}(1)$ and $\mathrm{AN}(1)$.
$\operatorname{IA}(2)=4$ second row begins at $\mathrm{JA}(4)$ and $\mathrm{AN}(4)$
$\mathrm{IA}(3)=4$ third row begins at $\mathrm{JA}(4)$ and $\mathrm{AN}(4)$. Since this is the same position at
which row 2 begins, this means that row 2 is empty.
$\operatorname{IA}(4)=6$ this is the first empty location in JA and AN. The description of row 3 thus ends at position $6-1=5$ of JA and AN.
In general, row r of A is described in positions $\operatorname{IA}(r)$ to $\operatorname{IA}(r+1)-1$ of JA and AN, except when $\operatorname{IA}(r+1)=\operatorname{IA}(r)$ in which case row r is empty. If matrix A has m rows, then IA has $m+1$ positions.

This representation is said to be complete because the entire matrix A is represented, and ordered because the elements of each row are stored in the ascending order of their column indices. It is thus a Row-wise Representation Complete and Ordered, or $\operatorname{RR}(\mathrm{C}) \mathrm{O}$.

The arrays IA and JA represent the structure of A, given as the set of the adjacency lists of the graph associated with A. If an algorithm is divided into a symbolic section and a numerical section (Section 1.12), the arrays IA and JA are computed by the symbolic section, and the array AN by the numerical section.

Gustavson (1972) ${ }^{112}$ also proposed a variant of row-wise storage, suitable for applications requiring both row and column operations. A is stored row-wise as described, and in addition the structure of A^{T} is computed and also stored row-wise. A row-wise representation of the structure of A^{T} is identical to a column-wise representation of the structure of A. It can be obtained by transposition of the row-wise structure of A (Chapter 7). This scheme has been used, for example, for linear programming applications (Reid, 1976). ${ }^{189}$

A much simpler row-oriented scheme was proposed by Key (1973) ${ }^{141}$ for unsymmetric matrices. The nonzeros are held in a two-dimensional array of size n by m, where n is the order of the matrix and m the maximum number of nonzeros in a row. This scheme is easy to manipulate but has the disadvantage that m may not be predictable and may turn out to be large.

1.9 Ordered and unordered representations

Sparse matrix representations do not necessarily have to be ordered, in the sense that the elements of each row can be stored in any order while still preserving the order of the rows. The matrix A

The k th step consists of the elimination of the nonzeros on column k of $\mathrm{A}^{(k)}$ both above and below the diagonal. Row k is first normalized by dividing all its elements by the diagonal element. Then, convenient multiples of the normalized row k are subtracted from all those rows which have a nonzero in column k either above or below the diagonal. The matrix $\mathrm{A}^{(k+1)}$ is thus obtained with zeros in its k initial columns. This process is continued until, at the end of step n, the identity matrix $\mathrm{A}^{(n+1)} \equiv \mathrm{I}$ is obtained. The k th step of Gauss-Jordan elimination by columns is equivalent to pre-multiplication of $\mathrm{A}^{(k)}$ by D_{k}^{-1} and by the complete column elementary matrix $\left(\mathrm{T}_{k}^{C}\right)^{-1}$:

$$
\begin{equation*}
\mathrm{A}^{(k+1)}=\left(\mathrm{T}_{k}^{C}\right)^{-1} \mathrm{D}_{k}^{-1} \mathrm{~A}^{(k)} \tag{2.37}
\end{equation*}
$$

where $\mathrm{A}^{(1)} \equiv \mathrm{A}$ and:

$$
\begin{align*}
\left(D_{k}\right)_{k k} & =A_{k k}^{(k)} \tag{2.38}\\
\left(T_{k}^{C}\right)_{i k} & =A_{i k}^{(k)} \quad \text { for all } i \neq k
\end{align*}
$$

Thus, we have:

$$
\begin{equation*}
\left(\mathrm{T}_{n}^{C}\right)^{-1} \mathrm{D}_{n}^{-1} \ldots\left(\mathrm{~T}_{2}^{C}\right)^{-1} \mathrm{D}_{2}^{-1}\left(\mathrm{~T}_{1}^{C}\right)^{-1} \mathrm{D}_{1}^{-1} \mathrm{~A}=\mathrm{I} . \tag{2.39}
\end{equation*}
$$

The factorized form of A is:

$$
\begin{equation*}
\mathrm{A}=\mathrm{D}_{1} \mathrm{~T}_{1}^{C} \mathrm{D}_{2} \mathrm{~T}_{2}^{C} \ldots \mathrm{D}_{n} \mathrm{~T}_{n}^{C} \tag{2.40}
\end{equation*}
$$

and the product form of the inverse in terms of column matrices is:

$$
\begin{equation*}
\mathrm{A}^{-1}=\left(\mathrm{T}_{n}^{C}\right)^{-1} \mathrm{D}_{n}^{-1} \ldots\left(\mathrm{~T}_{2}^{C}\right)^{-1} \mathrm{D}_{2}^{-1}\left(\mathrm{~T}_{1}^{C}\right)^{-1} \mathrm{D}_{1}^{-1} . \tag{2.41}
\end{equation*}
$$

The close relationship between this expression and the elimination form of the inverse, Expression (2.24), will be discussed in Section 2.10. The results of the elimination are usually recorded as a table of factors:

$$
\begin{array}{ccl}
\left(D_{1}\right)_{11}^{-1} & \left(T_{2}^{C}\right)_{12} & \left(T_{3}^{C}\right)_{13} \ldots \\
\left(T_{1}^{C}\right)_{21} & \left(D_{2}\right)_{22}^{-1} & \left(T_{3}^{C}\right)_{23} \tag{2.42}\\
\left(T_{1}^{C}\right)_{31} & \left(T_{2}^{C}\right)_{32} & \left(D_{3}\right)_{33}^{-1} \\
\vdots & \vdots & \vdots
\end{array}
$$

By Equation (2.38), this table is formed simply by leaving each off-diagonal $A_{i k}^{(k)}$ where it is obtained. The diagonal is obtained, as in Gauss elimination, by storing the reciprocals of the diagonal elements used to normalize each row. The lower triangle and diagonal of this table are thus identical to those of the Gauss table. Expressions (2.40) and (2.41) indicate how to use the table (2.42). When solving linear equations by means of $\mathbf{x}=\mathrm{A}^{-1} \mathbf{b}$, Equation (2.41) is used, with the matrices $\left(\mathrm{T}_{k}^{C}\right)^{-1}$ obtained from the table by reversing the signs of the off-diagonal elements of
column k (Property 2.4(d)). The matrices D_{k}^{-1} are directly available from the table. The product of A with any matrix or vector can also be computed using the table, as indicated by Equation (2.40).

Gauss-Jordan elimination can also be performed by rows. The version by columns requires the addition of multiples of row k to all other rows in order to cancel the off-diagonal elements of column k. This process can be understood conceptually as the construction of new equations which are linear combinations of the original ones. On the other hand, in Gauss-Jordan elimination by rows, we add multiples of column k to all other columns, in such a way that the off-diagonal elements of row k become zero. This process can be viewed as the construction of new unknowns which are linear combinations of the original ones and which satisfy linear equations with some zero coefficients. Alternatively, we can forget about the system of linear equations and view the row algorithm as the triangularization of A^{T}, the transpose of A, by columns. Doing this, we obtain the equivalent of Expression (2.41):

$$
\begin{equation*}
\left(\mathrm{A}^{T}\right)^{-1}=\left(\mathrm{T}_{n}^{\prime C}\right)^{-1}\left(\mathrm{D}_{n}^{\prime}\right)^{-1} \ldots\left(\mathrm{~T}_{2}^{\prime C}\right)^{-1}\left(\mathrm{D}_{2}^{\prime}\right)^{-1}\left(\mathrm{~T}_{1}^{\prime}\right)^{-1}\left(\mathrm{D}_{1}^{\prime}\right)^{-1}, \tag{2.43}
\end{equation*}
$$

which by transposition and using $\left(A^{T}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{T}$ yields:

$$
\begin{equation*}
\mathrm{A}^{-1}=\left(\mathrm{D}_{1}^{\prime}\right)^{-1}\left(\mathrm{~T}_{1}^{\prime R}\right)^{-1}\left(\mathrm{D}_{2}^{\prime}\right)^{-1}\left(\mathrm{~T}_{2}^{\prime R}\right)^{-1} \ldots\left(\mathrm{D}_{n}^{\prime}\right)^{-1}\left(\mathrm{~T}_{n}^{\prime R}\right)^{-1} \tag{2.44}
\end{equation*}
$$

Equation (2.44) is the product form of the inverse in terms of row matrices. The elimination by rows is equivalent to multiplying A from the right by Expression (2.44). The nontrivial elements of the matrices of Expression (2.44) are recorded as a table of factors in the usual way, and the table can be used to solve linear equations or to multiply either A or A^{-1} by any matrix or vector.

2.10 Relation between the elimination form of the inverse and the product form of the inverse

From the preceding section it should be clear that Gauss-Jordan elimination by columns can be performed equally well if we first eliminate all nonzeros from the lower triangle of A , and then all nonzeros from the upper triangle of A. In fact, when we start at the upper left-hand corner of A, we can eliminate lower and upper portions of columns in any order, provided only that upper portions are eliminated in order, lower portions are also eliminated in order, and the upper portion of any column k is eliminated after the lower portion of the preceding column. This statement holds true due to the fact that a row $k+1$ is obtained in final form immediately after the lower portions of columns 1 to k have been eliminated and row $k+1$ has been normalized; row $k+1$ can then be used either immediately or at any later stage to eliminate the upper portion of column $k+1$, provided that the upper portions of columns 1 to k have been previously eliminated. These facts can be stated formally using the properties of the elementary matrices (Section 2.4). We use Property 2.4(c) to express T_{k}^{C} as follows:

$$
\begin{equation*}
\mathbf{T}_{k}^{C}=\mathbf{L}_{k}^{C} \mathbf{U}_{k}^{C}, \tag{2.45}
\end{equation*}
$$

Table 3.1. Bounds for the norms of L, expression for $n_{i j}$ (see Equation 2.16), and bounds for the norm of the error matrix E for the factorization $L U=A+E$, where all matrices are of order n. The bandwidth of band matrices is assumed not to exceed n.

A	Bounds for L	$n_{i j}$	Error bounds for factorization								
Sparse	$\begin{aligned} & \\|\mathrm{L}\\|_{1} \leq a_{M}\left(\max _{j} c_{j}^{L}+1\right) \\ & \\|\mathrm{L}\\|_{\infty} \leq a_{M}\left(\max _{i} r_{i}^{L}+1\right) \end{aligned}$	$\begin{aligned} & \sum_{k=1}^{m} n_{i j}^{(k)} \\ & m=\min (i, j) \end{aligned}$	$\begin{aligned} & \\|\mathrm{E}\\|_{1} \leq 3.01 \varepsilon_{M} a_{M} \max _{j} \sum_{i=1}^{n} n_{i j} \\ & \\|\mathrm{E}\\|_{\infty} \leq 3.01 \varepsilon_{M} a_{M} \max _{i} \sum_{j=1}^{n} n_{i j} \end{aligned}$								
Full	$\begin{aligned} & \\|\mathrm{L}\\|_{1} \leq a_{M} n \\ & \\|\mathrm{~L}\\|_{\infty} \leq a_{M} n \end{aligned}$	$\min (i, j)$	$\\|\mathrm{E}\\|_{1},\\|\mathrm{E}\\|_{\infty} \leq \frac{3.01}{2} \varepsilon_{M} a_{M} n(n+1)$								
Band $\|\|\backslash \beta \backslash \beta \backslash\|$	$\begin{aligned} & \\|\mathrm{L}\\|_{1} \leq a_{M}(\beta+1) \\ & \\|\mathrm{L}\\|_{\infty} \leq a_{M}(\beta+1) \\ & \hline \end{aligned}$	$\begin{gathered} \max [0, \min (i, j, i-j+\beta+1, \\ j-i+\beta+1)] \end{gathered}$	$\\|\mathrm{E}\\|_{1},\\|\mathrm{E}\\|_{\infty} \leq 3.01 \varepsilon_{M} a_{M}(\beta+1)^{2}$								
Band $\|\|\backslash \beta \backslash 2 \beta \backslash\|$	$\begin{aligned} & \\|\mathrm{L}\\|_{1} \leq a_{M}(\beta+1) \\ & \\|\mathrm{L}\\|_{\infty} \leq a_{M}(\beta+1) \end{aligned}$	$\begin{array}{r} \max [0, \min (i, j, i-j+2 \beta+1, \\ j-i+\beta+1, \beta+1)] \end{array}$	$\begin{aligned} \\|\mathrm{E}\\|_{1},\\|\mathrm{E}\\|_{\infty} \leq & 3.01 \varepsilon_{M} a_{M}(\beta+1) \\ & \times(2 \beta+1) \end{aligned}$								

Then, the computed result \mathbf{w} satisfies the exact relation:

$$
\begin{equation*}
\mathrm{L} \mathbf{w}=\mathbf{b}+\delta \mathbf{b} \tag{3.52}
\end{equation*}
$$

where, from Equations 3.47 and 3.50 , the following bounds hold for the components of $\delta \mathbf{b}$:

$$
\begin{equation*}
\left|\delta b_{i}\right| \leq 3.01 \varepsilon_{M} b_{M i}\left(r_{i}^{L}+1\right) . \tag{3.53}
\end{equation*}
$$

A less tight but simpler bound is obtained if b_{M} is the absolute value of the largest element of all the vectors $\mathbf{b}^{(k)}$, so that $b_{M i} \leq b_{M}$ and:

$$
\begin{equation*}
\left|b_{i}^{(k)}\right| \leq b_{M} ; \quad i=1,2, \ldots, n ; \quad k \leq i . \tag{3.54}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\left|\delta b_{i}\right| \leq 3.01 \varepsilon_{M} b_{M}\left(r_{i}^{L}+1\right) \tag{3.55}
\end{equation*}
$$

Backward substitution is the solution of $\mathbf{U} \mathbf{x}=\mathbf{w}$. It can be viewed as an algorithm with n steps, where the sequence of vectors $\mathbf{w}^{(n)} \equiv \mathbf{w}, \mathbf{w}^{(n-1)}, \ldots, \mathbf{w}^{(2)}, \mathbf{w}^{(1)}$ is computed, with $\mathbf{w}^{(k)}$ and $\mathbf{w}^{(k-1)}$ having their components k to n identical. Step $k, k=n, n-1, \ldots, 1$, is:

$$
\begin{align*}
x_{k} & =w_{k}^{(k)} \\
w_{i}^{(k-1)} & =w_{i}^{(k)}-U_{i k} x_{k}+g_{i}^{(k)} ; \quad i=1, \ldots, k-1, \tag{3.56}
\end{align*}
$$

where $g_{i}^{(k)}$ is the error introduced by the floating point computation. The operations performed on an element $w_{i}, i<n$, are:

$$
\begin{equation*}
w_{i}-U_{i n} x_{n}+g_{i}^{(n)}+g_{i}^{(n)}-U_{i, n-1} x_{n-1}+g_{i}^{(n-1)}-\ldots-U_{i, i+1} x_{i+1}+g_{i}^{(i+1)}=x_{i} \tag{3.57}
\end{equation*}
$$

or:

$$
\begin{equation*}
w_{i}+\sum_{k=i+1}^{n} g_{i}^{(k)}=\sum_{k=i}^{n} U_{i k} x_{k} ; \quad i<n \tag{3.58}
\end{equation*}
$$

Thus, if we define the error vector $\delta \mathbf{w}$:

$$
\begin{align*}
& \delta w_{i}=\sum_{k=i+1}^{n} g_{i}^{(k)} ; \quad i<n \\
& \delta w_{n}=0 \tag{3.59}
\end{align*}
$$

we have the following exact relation between the computed numbers:

$$
\begin{equation*}
\mathbf{U} \mathbf{x}=\mathbf{w}+\delta \mathbf{w} \tag{3.60}
\end{equation*}
$$

In order to obtain bounds for $\delta \mathbf{w}$, we let $w_{M i}=\max _{k}\left|w_{i}^{(k)}\right|$, so that:

$$
\begin{equation*}
\left|w_{i}^{(k)}\right| \leq w_{M i} ; \quad 1 \leq i \leq n ; \quad i \leq k \leq n . \tag{3.61}
\end{equation*}
$$

In particular, for $k=i, w_{i}^{(i)}=x_{i}$, so that $\left|x_{i}\right| \leq w_{M i}$. We also let w_{M} be the largest $w_{M i}$; therefore:

$$
\begin{equation*}
\left|w_{i}^{(k)}\right| \leq w_{M} ; \quad i=1,2, \ldots, n ; \quad k \geq i \tag{3.62}
\end{equation*}
$$

Then, using Equation 3.22:

$$
\begin{equation*}
\left|g_{i}^{(k)}\right| \leq 3.01 \varepsilon_{M} w_{M i} ; \quad k>i \tag{3.63}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\delta w_{i}\right| \leq 3.01 \varepsilon_{M} w_{M i} r_{i}^{U} \tag{3.64}
\end{equation*}
$$

where r_{i}^{U} is the number of off-diagonal nonzeros in row i of U . Alternatively, using Equation 3.62:

$$
\begin{equation*}
\left|\delta w_{i}\right| \leq 3.01 \varepsilon_{M} w_{M} r_{i}^{U} \tag{3.65}
\end{equation*}
$$

Finally, we consider the residual

$$
\begin{equation*}
\mathbf{r}=\mathrm{Ax}-\mathbf{b} \tag{3.66}
\end{equation*}
$$

obtained when the solution \mathbf{x} of System 3.1 is computed using floating point arithmetic. Using Equations 3.41, 3.52 and 3.60 , we obtain:

$$
\begin{equation*}
\mathbf{r}=-\mathrm{E} \mathbf{x}+\mathrm{L} \delta \mathbf{w}+\delta \mathbf{b} . \tag{3.67}
\end{equation*}
$$

Taking the 1 -norm or the ∞-norm, we have:

$$
\begin{equation*}
\|\mathbf{r}\| \leq\|\mathrm{E}\|\|\mathbf{x}\|+\|\mathrm{L}\|\|\delta \mathbf{w}\|+\|\delta \mathbf{b}\| . \tag{3.68}
\end{equation*}
$$

From Equation 3.62 we obtain bounds for the norms of \mathbf{x} :

$$
\begin{align*}
\|\mathbf{x}\|_{1} & \leq n w_{M} \\
\|\mathbf{x}\|_{\infty} & \leq w_{M} . \tag{3.69}
\end{align*}
$$

Bounds for the norms of E and L are given in table 3.1. Bounds for the norms of $\delta \mathbf{w}$ and $\delta \mathbf{b}$ were obtained from Equations 3.65 and 3.55, respectively, and are listed in Table 3.2. Thus, a bound for $\|\mathbf{r}\|$ can be computed using Equation 3.68.

The residual \mathbf{r} has another interpretation. Let $\tilde{\mathbf{x}}$ be the exact solution of Equation 3.1; then $\mathrm{A} \tilde{\mathbf{x}}=\mathbf{b}$ and

$$
\begin{equation*}
\mathbf{r}=\mathrm{A}(\mathbf{x}-\tilde{\mathbf{x}}) \tag{3.70}
\end{equation*}
$$

Table 3.2. Values of some parameters and bounds for the norms $\delta \mathbf{b}$ and $\delta \mathbf{w}$ for forward and backward substitution.

A	Parameters of Section 3.4	Forward substitution	Backward substitution								
Sparse	See Section 3.4	$\begin{aligned} & \\|\delta \mathbf{b}\\|_{1} \leq 3.01 \varepsilon_{M} b_{M} n_{L} \\ & \\|\delta \mathbf{b}\\|_{\infty} \leq 3.01 \varepsilon_{M} b_{M}\left(\max _{i} r_{i}^{L}+1\right) \end{aligned}$	$\begin{aligned} & \\|\delta \mathbf{w}\\|_{1} \leq 3.01 \varepsilon_{M} w_{M} n_{U}^{\prime} \\ & \\|\delta \mathbf{w}\\|_{\infty} \leq 3.01 \varepsilon_{M} w_{M} \max _{i} r_{i}^{U} \end{aligned}$								
Full	$\begin{aligned} & r_{i}^{L}=i-1 \\ & r_{i}^{U}=n-i \\ & n_{L}=n(n+1) / 2 \\ & n_{U}^{\prime}=n(n-1) / 2 \end{aligned}$	$\begin{aligned} & \\|\delta \mathbf{b}\\|_{1} \leq(3.01 / 2) \varepsilon_{M} b_{M} n(n+1) \\ & \\|\delta \mathbf{b}\\|_{\infty} \leq 3.01 \varepsilon_{M} b_{M} n \end{aligned}$	$\begin{aligned} & \\|\delta \mathbf{w}\\|_{1} \leq(3.01 / 2) \varepsilon_{M} w_{M} n(n-1) \\ & \\|\delta \mathbf{w}\\|_{\infty} \leq 3.01 \varepsilon_{M} w_{M}(n-1) \end{aligned}$								
Band $\|\backslash \beta \backslash \beta \backslash\|$	$\begin{aligned} & r_{i}^{L}=\min (i-1, \beta) \\ & r_{i}^{U}=\min (n-i, \beta) \\ & n_{L}=(n-\beta / 2)(\beta+1) \\ & n_{U}^{\prime}=(n-\beta / 2-1 / 2) \beta \end{aligned}$	$\begin{aligned} & \\|\delta \mathbf{b}\\|_{1} \leq 3.01 \varepsilon_{M} b_{M}(n-\beta / 2)(\beta+1) \\ & \\|\delta \mathbf{b}\\|_{\infty} \leq 3.01 \varepsilon_{M} b_{M}(\beta+1) \end{aligned}$	$\begin{aligned} & \\|\delta \mathbf{w}\\|_{1} \leq 3.01 \varepsilon_{M} w_{M}(n-\beta / 2-1 / 2) \beta \\ & \\|\delta \mathbf{w}\\|_{\infty} \leq 3.01 \varepsilon_{M} w_{M} \beta \end{aligned}$								
Band $\|\|\backslash \beta \backslash 2 \beta \backslash\|$	$\begin{aligned} & r_{i}^{L}=\min (i-1, \beta) \\ & r_{i}^{U}=\min (n-i, 2 \beta) \\ & n_{L}=(n-\beta / 2)(\beta+1) \\ & n_{U}^{\prime}=(2 n-2 \beta-1) \beta \end{aligned}$	$\begin{aligned} & \\|\delta \mathbf{b}\\|_{1} \leq 3.01 \varepsilon_{M} b_{M}(n-\beta / 2)(\beta+1) \\ & \\|\delta \mathbf{b}\\|_{\infty} \leq 3.01 \varepsilon_{M} b_{M}(\beta+1) \end{aligned}$	$\begin{aligned} & \\|\delta \mathbf{w}\\|_{1} \leq 3.01 \varepsilon_{M} w_{M}(2 n-2 \beta-1) \beta \\ & \\|\delta \mathbf{w}\\|_{\infty} \leq 6.02 \varepsilon_{M} w_{M} \beta \end{aligned}$								

spondence between fill-ins and new edges added to the graph is evident. The reader can finish the exercise.

(a)

(b)

Figure 4.8: The three initial elimination steps and the corresponding elimination graphs for the matrix of Fig. 4.1(a). Fill-ins are encircled.

In terms of graph theory, Parter's rule says that the adjacent set of vertex k becomes a clique when vertex k is eliminated. Thus, Gauss elimination generates cliques systematically. Later, as elimination progresses, cliques grow or sets of cliques join to form larger cliques, a process known
$Y=\{14,16,1,7\}$ and finds that Y has adjacent vertices in L_{5} which have not yet been placed in any partition. Thus $S=\{7\}$ is pushed onto the stack and the algorithm branches to Step 5 , where, picking $v_{5}=13$, it is found that the path can not be prolonged any longer, so $t=1$. Letting $S=\{13\}$, the algorithm continues with Step 1, where S is not modified, and with Step 2, where Y is determined to be $\{13,15\}$, which becomes the third partition member.

(a)
(b)

Figure 4.12: The Refined Quotient Tree algorithm. (a) Structure of the matrix corresponding to the graph of Fig. 4.2(a). (b) The permuted block matrix corresponding to the quotient tree of Fig. 4.2(c).

Table 4.1

Class of graphs	Bound for fill-in	Bound for multiplication count	Observations and references
Any, such that $\sigma=1 / 2$	$c_{3} n \log _{2} n+O(n)$	$c_{7} n^{3 / 2}+O\left[n(\log n)^{2}\right]$	Ordering time is $O[(m+n) \log n]$ if separators can be found in $O(m+n)$ time. c_{3} and c_{7} given by Eq. 4.23 (Lipton et al., 1977^{152}
Planar graphs (in this case $\sigma=$ $1 / 2, \alpha=2 / 3, \beta=2 \sqrt{2}$)	$c_{3} n \log n+O(n)$	$c_{7} n^{3 / 2}+O\left[n(\log n)^{2}\right]$	$c_{3} \leq 129, c_{7} \leq 4002$. Ordering time is $O(n \log n)$ (Lipton and Tarjan, 1979^{151}; Lipton et al., 1979^{153})
Two-dimensional finite element graphs (in this case $\sigma=1 / 2, \alpha=$ $2 / 3, \beta=4\lfloor k / 2\rfloor)$	$O\left(k^{2} n \log n\right)$	$O\left(k^{3} n^{3 / 2}\right)$	k is the maximum number of boundary nodes of the elements. Ordering time is $O(n \log n)$ (Lipton et al., 1979 ${ }^{153}$)
Regular planar grid	$\frac{31}{8} n \log _{2} n+O(n)$	$\frac{829}{84} n^{3 / 2}+O\left(n \log _{2} n\right)$	(George and Liu, 1981 ${ }^{97}$)
Any such that $\sigma>1 / 2$	$O\left(n^{2 \sigma}\right)$	$O\left(n^{3 \sigma}\right)$	(Lipton et al., 1979 ${ }^{153}$)
Three-dimensional grid graphs (in this case $\sigma=2 / 3$)	$O\left(n^{4 / 3}\right)$	$O\left(n^{2}\right)$	(Lipton et al., 1979 ${ }^{153}$)
Any, such that $1 / 3<\sigma<1 / 2$	$O(n)$	$O\left(n^{3 \sigma}\right)$	(Lipton et al., 1979 ${ }^{153}$)
Any, such that $\sigma=1 / 3$	$O(n)$	$O\left(n \log _{2} n\right)$	(Lipton et al., 1979 ${ }^{153}$)
Any, such that $\sigma<1 / 3$	$O(n)$	$O(n)$	(Lipton et al., 1979 ${ }^{153}$)

The idea is illustrated in Fig. 4.19(a), where the rectangle represents the set of nodes of a two-dimensional finite element grid. Choose σ small separators ($\sigma=3$ in the figure) which consist of grid lines and dissect the grid into $\sigma+1$ blocks R_{1}, R_{2}, \ldots of comparable size. If all separators are considered to form another single block, a tree partitioning is obtained as shown by the quotient tree of Fig. 4.19(b). The advantages of tree partitioning regarding the reduction of fill-in and operation count were discussed in Section 4.9. Now, let us number the nodes of each R-set sequentially, following lines from left to right as closely as possible, and starting at the bottom left as indicated by the arrows. When all R-sets have been numbered, the separators are also numbered sequentially, as the arrows show. The numbering corresponds to a monotone ordering of the tree. The matrix associated with the finite element grid is partitioned into blocks as shown in Fig. 4.19(c), where all nonzeros are confined to the cross-hatched areas. If Gauss elimination is performed on this matrix, fill-in will result only inside the cross-hatched areas and in the dotted areas. Besides, the hatched blocks are not completely full. For example, the four leading diagonal blocks are banded.

Figure 4.25: Reverse depth-first ordering, short frond strategy, for the graph of Fig. 4.2(a).
in favor of vertex 19, which is adjacent to two visited vertices: 9 and 10. The reader may continue the search and verify that the spanning tree and reverse depth-first ordering shown in Fig. 4.25(a) may be obtained. The separators (11), $(10,18,2)$ and (14) can be immediately identified. The corresponding permuted matrix is shown in Fig. 4.25(b). No fill-in at all is produced by elimination on this matrix, a result obtained at a very low computational cost. The reason why an ordering with no fill-in exists for the graph of Fig. 4.2(a) is that this graph is triangulated (Rose, 1970 ${ }^{194}$), see Section 4.16.

Now consider the application of the long frond strategy to the same graph. Again 11 is the starting vertex. Vertices 10 and 18 are the next candidates, both of degree 5 . We arbitrarily select vertex 10. At this point $V_{v}=\{11,10\}$, and vertices $18,2,9$ and 19 all have three edges leading to vertices not in V_{v}. Vertex 18 is discarded because it is adjacent to both visited vertices, while 2,9 and 19 are adjacent to only one of the visited vertices. Let us choose vertex 2 to be the next vertex to visit.

At this point $V_{v}=\{11,10,2\}$ and $\left|\operatorname{Adj}(w)-V_{v}\right|$ is equal to 3,2 and 2 for vertices 17,18 and 9, respectively. Thus, we select vertex 17 . Next is vertex 4 , which introduces two new edges (while 12 or 18 would have introduced only one), and finally vertex 12 , which is adjacent to only two visited vertices (while 18 is adjacent to five). On backtracking to vertex 4 we find the tree arc $(4,18)$. Figure 4.26(a) shows one possible ordering obtained in this way. The four separators (11), (10, 2), $(17,4)$ and (14) can be identified. As expected, this strategy has produced more separators than the short frond strategy. The corresponding permuted matrix is shown in Fig. 4.26(b). Elimination would produce 10 fill-ins in this matrix.

Figure 4.26: Reverse depth-first ordering, long frond strategy, for the graph of Fig. 4.2(a).

When the user is dealing with a large problem, a sophisticated ordering algorithm may be convenient, and may even determine whether the problem is tractable or not. For a medium-size problem, a simple ordering technique may often produce a large improvement as compared with no ordering at all, at a low programming cost.

4.16 Lexicographic search

In this section we continue the analysis of low fill orderings for symmetric matrices, but now from a different point of view. We consider a special class of matrices which can be ordered in such a way that Gauss elimination would cause no fill-in. Then we take advantage of the properties of such matrices to give a procedure which finds a low fill ordering for any symmetric matrix. As usual, we discuss the ideas in terms of graph theory. Let $G^{A}=(V, E)$ be the undirected graph associated with a symmetric matrix A, and let $G^{F}=(V, E \cup F)$ be the corresponding filled graph associated with $\mathbf{U}+\mathbf{U}^{T}$, where $\mathrm{A}=\mathbf{U}^{T} \mathrm{DU}$ is the factorization of A and F is the set of new edges (or nonzeros of U) introduced during factorization. If the graph G^{A} has an elimination ordering for which $F=\emptyset$, i.e., no fill-in is produced if elimination is carried out in that order, we say that G^{A} is a perfect elimination graph. The ordering itself is called a perfect elimination ordering. Note that fill-in may result if we eliminate in a different order, even when G^{A} is a perfect elimination graph. Note also that every elimination graph G^{F} is a perfect elimination graph since no fill-in would result if elimination were performed again in the same order.

Chapter 6

Sparse Eigenanalysis

6.1 Introduction

The standard eigenvalue problem is defined by

$$
\begin{equation*}
\mathrm{A} \mathbf{x}=\lambda \mathbf{x} \tag{6.1}
\end{equation*}
$$

where A is the given n by n matrix. It is desired to find the eigenpairs (λ, \mathbf{x}) of A , where λ is an eigenvalue and \mathbf{x} is the corresponding eigenvector. The generalized eigenvalue problem is

$$
\begin{equation*}
\mathrm{A} \mathbf{x}=\lambda \mathrm{B} \mathbf{x} \tag{6.2}
\end{equation*}
$$

where A and B are given n by n matrices and again we wish to determine λ and \mathbf{x}. For historical reasons the pair A, B is called a pencil (Gantmacher, 1959^{83}). When $\mathrm{B}=I$ the generalized problem reduces to the standard one.

Both for simplicity and to follow the general trend imposed by most of the literature and existing software, we restrict the analysis to the case where A is real symmetric and B is real symmetric and positive definite, except when stated otherwise. Almost all the results become valid for hermitian matrices when the conjugate transpose superscript H is written in place of the transpose superscript T. On the other hand, an eigenvalue problem where A or A and B, are hermitian, can be solved using software for real matrices (Section 6.15).

Equation 6.1 has a nonzero solution \mathbf{x} when

$$
\begin{equation*}
\operatorname{Det}(\mathrm{A}-\lambda \mathrm{I})=0 \tag{6.3}
\end{equation*}
$$

This is a polynomial equation of the nth degree in λ, which has n roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. The roots are the eigenvalues of A, and they may be either all different or there may be multiple roots with any multiplicity. When A is real symmetric, the eigenvalues are all real. The simplest example is the identity matrix I, which has an eigenvalue equal to 1 with multiplicity n. To each eigenvalue
array of pointers IC at lines 5 and 24 . The multiple switch array IX is initialized to 0 at lines 2 and 3. I, defined at line 4, identifies each row. The DO 20 loop scans row I of the first given matrix: the column indices, if any, are stored in JC at line 11 and the row index is stored in IX at line 13, thus turning "on" the corresponding switch. The DO 40 loop runs over row I of the second matrix. For each column index J, defined at line 18, the multiple switch is tested at line 19: if the value of IX(J) is I, then the switch is on, which means that J has already been added to the list JC and should not be added again. Otherwise, J is added to JC at line 20 . The reader may expect that the sentence $\operatorname{IX}(\mathrm{J})=\mathrm{I}$ should appear between lines 21 and 22 in order to record the fact that the column index J has been added to the list JC. However, such a record is now not necessary because, during the processing of row I, the same value of J will never be found again: there are no repeated column indices in the representation of row I in the array JB.

7.11 Algorithm for the numerical addition of two sparse matrices with N rows

213 Sherman, A. H. (1975). On the efficient solution of sparse systems of linear and nonlinear equations. Ph.D. Thesis, Department of Computer Science, Yale University, New Haven, CT. Report No. 46.
214 Shirey, R. W. (1969). "Implementation and analysis of efficient graph planarity testing algorithms." Ph.D. Dissertation, University of Wisconsin, Madison, WI.
215 Silvester, P. P. (1980). Software engineering aspects of finite elements. In Chari abd Silvester (1980) ${ }^{30}$, pp. 69-85.

216 Skeel, R. D. (1981). Effect of equilibration on residual size for partial pivoting. SIAM J. Numer. Anal. 18, 449-454.
217 Smith, B. T., Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe, Y., Klema, V. C. and Moler, C. B. (1976). Matrix Eigensystem Routines - EISPACK Guide. Lecture Notes in Computer Science, Vol. 6, 2nd. edn. Springer-Verlag: Berlin.
218 Speelpenning, B. (1978). "The generalized element method." Department of Computer Science, University of Illinois, Urbana, Champaign, Il. Report UIUCDCS-R-78.
219 Stewart, G. W. (1973). Introduction to Matrix Computations. Academic Press; New York.
220 Stewart, G. W. (1974). Modifying pivot elements in Gaussian elimination. Math. Comput. 28, 537-542.
221 Stewart, G. W. (1976a). A bibliographical tour of the large sparse generalized eigenvalue problem. In Bunch and Rose (1976) ${ }^{28}$, pp. 113-130.
222 Stewart, G. W. (1976b). Simultaneous iteration for computing invariant subspaces of nonhermitian matrices. Numer. Math. 25, 123-136.
223 Stewart, W. J. and Jennings, A. (1981). Algorithm 570.LOPSI: A simultaneous iteration algorithm for real matrices. ACM Trans. Math. Software 7, 230-232.
224 Strassen, V. (1969). Gaussian elimination is not optimal. Numer. Math. 13, 354-356.
225 Swift, G. (1960). A comment on matrix inversion by partitioning. SIAM Rev. 2, 132-133.
226 Szyld, D. B. and Vishnepolsky, O. (1982). "Some operations on sparse matrices." Institute for Economic Analysis, New York University. Private communication.
227 Takahashi, H. and Natori, M. (1972). Eigenvalue problem of large sparse matrices. Rep. Comput. Cent. Univ. Tokyo 4, 129-148.
228 Tarjan, R. E. (1971). "An efficient planarity algorithm." Computer Science Department, Stanford University, Stanford, CA. Technical Report 244.
229 Tarjan, R. E. (1972). Depth first search and linear graph algorithms. SIAM J. Comput. 1, 146-160.
230 Tarjan, R. E. (1975). Efficiency of a good but not linear set union algorithm. J. Assoc. Comput. Mach. 22, 215-225.
231 Tarjan, R. E. (1976). Graph theory and Gaussian elimination. In Bunch and Rose (1976) ${ }^{28}$, pp. 3-22.
232 Tewarson, R. P. (1967). On the product form of inverses of sparse matrices and graph theory. SIAM Rev. 9, 91-99.
233 Tewarson, R. P. (1967). Row-column permutation of sparse matrices. Comput. J. 10, 300-305.

Index

n-dimensional space, 185
Accidental cancellation, 58, 69, 85, 143
Accumulator
expanded, 30, 230, 234, 244
Active column, 15
Active elements, 78
Active submatrix, 64
Acyclic digraph, 150
paths in, 157
Addition
of sparse matrices, 219
of sparse matrices, numerical algorithm., 223
of sparse matrices, symbolic algorithm., 222
of sparse vectors, 30,32
Adjacency level structure, 93
directed, 155
Adjacency matrix, 12
Adjacency structure of a graph, 10
Adjacent set, 89, 94
Adjacent vertex, 10
Algebra for sparse matrices, 211
Algebraic equations
linear, 35
Algolw, 8
Algorithm
conjugate gradient, 15
Lanczos, 15
Almost-planar graph, 92, 122
Amalgamation of cliques, 103
Ancestor, 90
Arc of tree, 93, 133, 134
redundant, 154

Array, 5
data structure, 8
storage, 5
switch, 29
Assembly
nodal, 249
Assembly of element matrices, 127, 258
example, 257
numerical algorithm, 261
symbolic algorithm, 259
Assignment
maximum, 148
Augmented system, 132
Augmenting path, 159, 161
shortest, 163
Backsubstitution, 57
Backtracking, 133, 151
Backward error analysis, 67
Backward substitution, 48, 56
example, 245
Balancing, 84
Band
generalized eigenproblem, reduction, 188
Lanczos algorithm, 206
matrix, 12
of a matrix, 12
variable, 14
Band matrix
band, 12
bandwidth, 12
diagonal storage, 12,13
half-bandwidth, 12
semiband, 13
Bandwidth, 12
reduction algorithm, 96
Basis, 194
orthonormal, 194
Bidirectional linked list, 7
Bigraph, 146, 148
Biorthogonalization Lanczos algorithm, 210
Bipartite graph, 146, 148, 163
Bireducible matrix, 145
Bisection method, 184
Block-partitioned matrix
storage of, 24
Block-within-block-column storage, 25
Block diagonal pivoting, 82
Block Lanczos algorithm, 206
Block lower triangular form, 144, 152, 157
Block matrix, 110
Block methods, 37
Boundary conditions
for scalar problems, 251
for vector problems, 252
Boundary element method, 249
Bounds for eigenvalues, 182
Boy, 148, 164
Breadth-first search, 93
algorithm, 94
of a digraph, 155
of undirected graph, 93
Bunch's error formulation, 67
Cancellation
accidental, 69, 85
Cardinality, 87
Cell, 6
Characteristic polynomial, 183
Chebyshev acceleration, 198
Checking a sparse representation, 276
Cholesky factorization, 38,53
implementation, 55

Circular linked list, 7
Circular storage, 17
Clique, 12, 89
Clique amalgamation, 103
Codiagonal, 13
Collapsing of vertex, 167
Column
active, 15
equilibrated matrix, 83
graph, 148
head, 16
permutation, 217
Column-wise representation, 20
complete, ordered, 21
Column heads, 16
Compact storage, 8,30
Compatible numbering, 118
Complete pivoting, 78-80
Complete representation, 20
Component partitioning, 90
Composite vertex, 91, 167
Compression
Sherman's, 22
Condensation, 150, 256
Congruence transformation, 178
Congruent pencils, 179
Conjugate gradient algorithm, 15
Connected component, 90
Connected digraph, 147
Connected graph, 89
Connected nodes, 251
Connection table, 11
Connectivity level structure, 149
Connectivity matrix, 12, 249, 256
Consistent numbering, 118
Control of numerical errors, 77
Convenient ordering, 87
Coordinate over-relaxation, 181
Coordinate relaxation, 181
Copying a sparse matrix, 279

Cost considerations, 57
CR(C)O, 21
Cross-link, 93, 154, 155
Cuthill and McKee algorithm, 96
reverse, 98
Cutvertex, 90
Cycle, 89
directed, 147
Data structure, 26
array, 8
dynamic, 27
record, 8
static, 26
Data structure set-up, 26
Definitions and properties, 37
Deflation, 190
Degree, 11, 89
Depth-first search, 93, 132
of a digraph, 151
of undirected graph, 132
Descendant, 90
Desirable forms, 27
Determinant, 183
Diagonal elementary matrix, 40
Diagonally dominant matrix, 39
properly, 39
Diagonal pivoting, 79
Diagonal storage of band matrix, 12, 13
Diakoptical system, 131
Diameter of graph, 89
Difference
symmetric, 162
Digraph, 10, 87, 145
breadth-first search, 155
depth-first search, 151
Dimension, 194
Directed adjacency level structure, 155
Directed adjacency level substructure, 156
Directed cycle, 147

Directed graph, 10, 87, 145
Direct iteration, 190
for generalized eigenproblem, 193
Dirichlet nodes, 251
Disconnected graph, 89
Disjoint list
multiple, 9
Displaying a sparse matrix, 277
Dissection
generalized nested, 121
height, 114
nested, 113
Distance, 89, 147
Dot product, 194
of sparse vectors, 33
Dual structure, 150
Dynamic storage, 26
allocation, 27
Dynamic storage allocation, 27
Dynamic structure, 27
Eccentricity, 89
Edge, 10, 87
Eigenanalysis, 177
of hermitian matrix, 209
of Hessenberg matrix, 189
of tridiagonal matrix, 189
of tridiagonal unsymmetric matrix, 189
Eigenpair, 177
Eigenproblem
generalized, 177
standard, 177
unsymmetric, 210
Eigenvalue, 177
economizer, 256
Eigenvalues
bounds for, 182
Eigenvector, 177
left-hand, 210
right-hand, 210

Element
generalized, 130
super, 130
Elementary matrices, 40
properties, 41
Elementary matrix, 40
Element matrix, 128
assembly, 128
Elimination digraph, 147
Elimination form
relation with product form, 52
Elimination form of the inverse, 47, 52
Elimination graph, 101
perfect, 136
Elimination ordering
minimal, 138
minimum, 138
perfect, 136
Embedding
planar, 88
Entrance, 149
Envelope, 14
Envelope storage
of symmetric matrices, 14
Equilibrated matrix, 83
Equilibration, 83
Error
estimator, 82
Error bounds
for factorization, 74
for substitution, 76
Error growth
monitoring, 82
Errors
control, 77
in floating point operations, 65
in sparse factorization, 68
in sparse substitution, 73
Estimator, 82
Euclidean space, 193

Exit, 149
Expanded array of pointers, 33, 34
Expanded real accumulator, 31
Expanded storage, 9, 30
Factorization
Cholesky, 38, 53
error bounds, 74
errors, 68
orthogonal, 37
triangular, 22, 35
Fast Givens rotation, 186
Fill, 26, 36
Fill-in, 85
for nested dissection, 123
Filled digraph, 147
Filled graph, 103
Finite element, 127
graph, 92
method, 92, 127, 249
ordering, 127
Fixed length records, 16
Floating point operations
errors, 65
Flutter
aircraft analysis, 210
Forest
spanning, 92,152
Format, sparse
column-wise, 20
row-wise, 19
Forward and backward substitution algorithm, 246
Forward row-backward column storage, 18
Forward substitution, 48, 56
example, 245
Free vertex, 161
Frond, 133, 154
Front, 129
Frontal method, 128
for general matrix, 175
Front of queue, 7
Frontwidth, 15
Fundamentals, 5
Gauss-Jordan elimination
by columns, 50
by rows, 52
Gauss-Seidel
algorithm, 275
method, 274
Gauss elimination
and graph tehory, 101
by columns, 45
by rows, 49
Generalized eigenproblem, 177
Generalized element, 130
Generalized nested dissection, 121
Gerschgorin
interval, 183
Gerschgorin disc, 183
Girl, 148, 164
Givens rotation, 186
fast, 186
Gram-Schmidt orthonormalization, 196, 206
Graph, 87
adjacency structure, 10
bipartite, 146
connected, 89
directed, 10, 87
disconnected, 89
edge, 10
labelling, 10
planar, 88, 119
representation, 10
storage, 10
undirected, 10
vertex, 10
Graphs
clique, 12

Graph theory
and Gauss elimination, 101
for symmetric matrices, 87
for unsymmetric matrices, 146-148
Hölder's inequality, 65
Half-bandwidth, 12
Hall's algorithm, 158
Head, 6
of column, 16
of row, 16
Height of dissection, 114
Hermitian matrix, 40
eigenanalysis of, 209
Hessenberg form, 37
Hessenberg matrix, 185
eigenanalysis of, 189
Hopcroft and Karp's algorithm, 161
Householder's reflection, 186
matrix, 186
Hypermatrix storage, 25
Implicit storage, 24
Incident edge, 89
Indefinite matrix, 37
Indefinite symmetric system, ordering, 140
Indegree, 146
Indistinguishable vertices, 107
Inertia theorem, 184
Infinite element, 127
Inner product, 193
Integer array of pointers, 32, 34
Integers
merging of lists, 28
storage of lists, 8
Interval of Gerschgorin, 183
Introduction, 1, 5, 63
Invariance of a graph, 88, 145, 148
Invariant subspace, 194
Inverse iteration, 190
for generalized eigenproblem, 193
simultaneous, 198
Isostructural rows, 24
Jacobi rotation, 186
Jenning's storage, 14
Jungle, 156
Key's storage, 20
King's algorithm, 98
reverse, 101
Knuth-Rheinboldt-Mesztenyi storage, 17
Knuth sparse storage scheme, 16
Knuth storage
column heads, 16
row heads, 16
KRM circular storage, 17
Krylov subspace, 199
Label, 10
Labelled graph, 10, 87
Laguerre's iteration, 183
Lanczos' basis, 199
Lanczos algorithm, 15, 199
band, 206
biorthogonalization, 210
block, 206
block, for generalized eigenproblems, 208
for generalized eigenproblem, 203
in practice, 203
with no orthogonalization, 205
with periodic orthogonalization, 206
with reorthogonalization, 204
with selective orthogonalization, 204
Left-hand eigenvector, 210
Left row elementary matrix, 41
Length
of level structure, 93,155
of partitioning, 150
Level structure, 90, 93
ajacency, 93
connectivity of, 149
directed adjacency, 155, 156
length of, 93
rooted, 93
width, 93
Lexicographic search, 136 algorithm, 138
Linear algebraic equations, 35
Line of a matrix, 18
Linked list, 6
bidirectional, 7
circular, 7
Linked sparse storage schemes, 15
Linked storage, 15
List
head, 6
linked, 6
merging, 28
operations with, 5, 9
range, 8
sparse, 8
storage of, 5
terminator, 6
Lists of integers, 8
compact storage, 8
expanded storage, 9
merging, 28
multiple disjoint, 9
range, 8
sparse, 8
storage, 8
Long frond ordering, 134
Loop, 88
Lower column elementary matrix, 40
Lower triangular matrix, 22, 40
block form, 144
Lowlink, 168
Machine precision, 65
Markowitz's algorithm, 172
Markowitz's pivoting, 172

Matching, 148, 161
Matrices
elementary, 40
triangular, 40
Matrix
adjacency, 12
bireducible, 145
connectivity, 12
diagonally dominant, 39
elementary, 40
hermitian, 40
indefinite, 37
lower triangular, 22, 40
minor, 38
nondefinite, 37
nullity, 39
of rank one, 39
orthogonal, 38
permutation, 44
positive definite, 37
principal minor, 38
properly diagonally dominant, 39
rank, 39
rank deficiency, 39
singular, 39
structure, 16
triangular factorization, 38
unit diagonal, 40
unsymmetric, 37
upper triangular, 22, 40
zero-nonzero pattern, 16
Maximal set, 157
Maximum assignment, 148
Maximum set, 157
Merging sparse lists of integers, 28
Mesh, 127
Mesh generation, 250
Minimal elimination ordering, 138
Minimal nested dissection partitioning, 115
Minimal separator, 90

Minimization of trace, 208
Minimum degree algorithm, 104
Minimum elimination ordering, 138
Minor, 38
principal, 38
Minrow-within-mincolumn pivoting, 174
Modularity, 27
Monitoring error growth, 82
Monotone ordering, 90
Multi-frontal method, 130
Multiple disjoint lists, 9
Multiple switch technique, 29
Multiplication
of diagonal matrix by matrix, 279
of general matrix by vector, 224
of sparse matrices, 230
of symmetric matrix by vector, 228,229
of triangular matrix by matrix, 268-270
of triangular matrix by vector, 272
Multiplicity, 177
Nested dissection, 113
algorithm, 116
fill-in, 123
generalized, 121
ordering, 113
properties, 118
tree, 114
Nodal assembly matrix, 249, 251, 257
Nodes, 127
connected, 251
Dirichlet, 251
Nonzero, 69, 85
definition, 69
Norm
of matrix, 65, 72
of vector, 64
Nullity, 39
symbolic, 159
Nullity of a matrix, 39

Numbered graph, 87
Numbering
compatible, 118
consistent, 118
Numerical assembly algorithm, 261
Numerical errors, 63, 65, see also Errors
Numerical examples, 59
Numerical processing, 26
Numerical stability and pivot selection, 78-82
Numerical triangular factorization algorithm, 242-

245
in row-wise format, 238-239
Offspring, 90
One-way dissection, 122-126
algorithm, 125-126
Operations with lists, 5
Operations with sparse matrices, 211
Ordered graph, 87
Ordered representation, 20
Ordering
convenient, 87
for pivot selection, 45
monotone, 90
Origin shift, 191
Orthogonal factorization, 37
Orthogonal matrix, 38
Orthogonal similarity, 178
Orthonormal basis, 194
Orthonormalization
Gram-Schmidt, 206
Outdegree, 146
Overhead storage, 15
Overrelaxation
coordinate, 181
parameter, 181
Packed storage, 30
Partial pivoting, 80
Partitioned matrix
storage, 24-26

Partitioning, 90
component, 90
tree, 91
Pascal, 8
Path, 89
augmenting, 159, 161
length, 89
shortest augmenting, 162
Paths in an acyclic digraph, 157-158
algorithm for finding, 157
Pattern
zero-nonzero, 16
Pedigree, 90
Pencil, 177
congruent, 179
Perfect elimination graph, 136
Perfect elimination ordering, 136
Peripheral vertex, 89
Permutation
of columns, 217
of rows, 217
Permutation matrix, 44
storage, 45
Phase counter, 30
Pivot, 45
Pivoting, 78
block diagonal, 82
complete, 79
diagonal, 79
for symmetric matrix, 86,141
for unsymmetric band matrix, 175
for unsymmetric matrix, 172-175
partial, 80
threshold, 80
Pivot selection, 45, 77
and numerical stability, 78-83
Planar embedding, 88
Planar graph, 88, 119
Plane in n-dimensional space, 185
Plane rotation, 186

Pop
item on stack, 7
Positive definite matrix, 37
Power method, 190-191
for generalized eigenproblem, 193
Practical Cholesky factorization, 55
Preface, xiii
Primary candidates, 78
Principal minor, 38
Printing a sparse matrix, 277
Processing
numerical, 26
symbolic, 26
Product, see Multiplication
Product form of the inverse, 51-53
Profile, 14
reduction, 98-101
Properties and definitions, 37
Properties of elementary matrices, 41
Properties of triangular matrices, 42-44
Pseudoperipheral vertex, 89
algorithm for finding, 95
Push
item on stack, 7
Queue, 7
front, 7
rear, 7
storage, 5
Quotient graph, 90
Quotient tree, 91
algorithm, refined, 110
Radix sort, simultaneous, 217
Range of list, 8
Rank
deficiency, 39
of a matrix, 39
symbolic, 159
Rank one matrix, 39
Rayleigh-Ritz procedure, 195

Rayleigh matrix, 182, 195
Rayleigh quotient, 180-182
iteration, 193
iteration, for generalized eigenproblem, 193
procedure, 195
procedure, for generalized eigenproblem, 195
Reachability matrix, 146
Reachable set, 90
Reachable vertex, 90, 146
Real accumulator
expanded, 31
Rear of queue, 7
Receiver, 146
Record data structure, 8
Records
fixed length, 16
Records of variable length, 28
Reducible matrix, 145
Reduction
of band generalized eigenproblem, 188
of band matrix, 188-189
of bandwidth, 96-98
of general matrix, 185-187
of profile, 98-101
Reflection of Householder, 186
Reflector, 186
Relaxation coordinate, 181
Representation, 19-20
complete, 20
of graphs, 10-12
ordered, 20
ordering, 215-216, 218
transforming, 278
unordered, 20
Residual, 75, 84
Residual matrix, 200
Residual vector, 181
Restriction, 194
Reverse
depth-first ordering, 134
monotone ordering, 133
Right-hand eigenvector, 210
Right row elementary matrix, 41
Ritz values, 195
Ritz vector, 195
threshold, 204
Rooted level structure, 93
Rooted substructure, 155
Rooted tree, 90
Root of strong component, 153
Rotation
fast Givens, 186
Givens, 186
Jacobi, 186
plane, 186
Row
equilibrated matrix, 83
graph, 148
head, 16
Row-wise format, 19-20
Row-wise representation, 19
complete, unordered, 21
complete and ordered, 20
diagonal and upper, ordered, 21
upper, ordered, 22
Row heads, 16
Row permutation, 217-218
Rows
isostructural, 24
RR(C)O, 20
RR(C)U, 21
RR(DU)O, 21
RR(U)O, 22
Sargent and Westerberg's algorithm, 167-168
Scalar product, 194
of sparse vectors, 33
Scaling, 83-84
Search, 93
Section graph, 88

Selection of pivots, 45, 77
Selfedge, 88
Semiband, 13
Separator, 90
minimal, 90
Set
notation, 162
operations, 162
Shape functions, 250
Sherman's compression, 22-24
Shift of origin, 191
Short frond ordering, 134
Similarity, orthogonal, 178
Simultaneous iteration, 196-199
for generalized eigenproblem, 198-199
inverse, 198
Simultaneous radix sort, 217
Singular matrix, 39
Singular values, 208
Sink, 146
Skeleton, 92
Skyline storage, 15
Software for unsymmetric systems, 175
Source, 146
Space, 193
Span, 90
Spanning forest, 92,152
Spanning set, 194
Spanning tree, 92
Sparse list, 8
Sparse matrix algebra, 211-247
operations, 211
Sparse representation
checking of, 276
Sparse row-wise format, 19-20
Sparse substitution
errors in, 73-77
Sparse tableau, 132
Sparse vectors
addition, 30-33
dot product, 33
scalar product, 33-34
Spectral factorization, 178
Stability
numerical, 78-82
Stack, 7
pop an item, 7
push an item, 7
storage, 5
top, 7
Standard eigenproblem, 177
Static data structure, 26
Stiffness matrix, 251
Stodola's iteration, 190
Storage, 5-28
allocation, 26
block-partitioned matrix, 24
block-within-block-column, 25
compact, 30
compressed, 22
connection table, 11
dynamic allocation, 27
dynamic schemes, 26-28
expanded, 30
forward row-backward column, 18
hypermatrix, 25
implicit, 24
Knuth-Rheinboldt-Mesztenyi, 17
Knuth scheme, 16
KRM, 17
linked sparse schemes, 15
of arrays, 5
of band matrices, 12
of graphs, 10
of integers, 8
of lists, 5
of lists of integers, 8
of queues, 5
of stacks, 5
of symmetric matrices, 14
overhead, 15
packed, 30
skyline, 15
sparse row-wise format, 19
supersparse, 26
variable band, 14
Strong component, 145, 148-151, 167, 168
root, 153
Strongly connected component, 148
Strongly connected digraph, 148
Structure of a matrix, 16, 20
Sturm sequence, 184
Subgraph, 88
Subspace, 194
invariant, 190, 194
iteration, 196
Krylov, 199
Substitution
backward, 48, 56-57
error bounds for, 76
errors in, 73-77
forward, 48, 56-57
Substructure
rooted, 155
Substructuring, 130
Super-element, 130
Supersparse storage, 26
Switch, 29
array, 29
multiple, 29
phase counter, 30
Switch array, 29
Switch technique
multiple, 29-30
Sylvester's inertia theorem, 184
Symbolic
nullity, 159
Symbolic assembly algorithm, 259-260
Symbolic processing, 26

Symbolic rank, 159
Symbolic section, 26
Symbolic singular matrix, 159
Symbolic triangular factorization
algorithm, 240-242
in row-wise format, 235
Symmetric
difference, 162
Symmetric indefinite system
ordering, 140-141
Symmetric matrices
envelope storage, 14
Symmetric matrix, 37
System
augmented, 132
diakoptical, 131
Table of factors, $43,47,51$
Tarjan's algorithm, 168-172
Terminal members, 114
Terminator, 6
Threshold pivoting, 80
Threshold vector, 204
Tolerance, 80
Top of stack, 7
Trace, 183
Trace minimization, 208
Transforming a representation, 278
Transmitter, 146
Transportability, 212
Transposition of a matrix, 213-215
algorithm, 215-216
Transversal, 18, 145, 146, 158
Tree, 90
nested dissection, 114
partitioning, 109-113
quotient, 90
rooted, 90
spanning, 92
Tree arc, $93,133,152,155$
redundant, 154
Tree partitioning, 91
Triangular factorization, 22, 35
in row-wise format, 235-245
numerical, 238-239
numerical algorithm, 242-245
symbolic algorithm, 240-242
Triangular matrices, 40
properties, 42-44
Triangulated graph, 137
Triangulation, 137
Tridiagonal matrix, 185
eigenanalysis of, 189
eigenanalysis of unsymmetric, 189
Triple, 16
Undirected graph, 10, 87
breadth-first search, 93-95
depth-first search, 132-136
Uni-frontal method, 130
Unit diagonal matrix, 40
Unordered representation, 20-22
Unsymmetric band matrix pivoting, 175
Unsymmetric eigenproblem, 210
Unsymmetric matrix, 37
graph theory, 146-148
pivoting strategies for, 172-175
Unsymmetric system software, 175
Upper almost-triangular matrix, 185
Upper column elementary matrix, 41
Upper Hessenberg matrix, 185
Upper triangular matrix, 22, 40
Variable band, 14
Variable length records, 28
Vectors
addition, 30-32
Vertex, 10, 87
adjacent, 10
degree, 11
Vertex collapsing, 167

Wavefront, 15
Width
of level structure, 155
Zero-nonzero pattern, 16
Zlatev's pivoting, 81 improved, 81

[^0]: ${ }^{a}$ In the Preface, the pertinent references are given as footnotes, because this enhances clarity. The full list of references is given at the end of the book. Tinney, 1969, ${ }^{237}$ p.28; Willoughby, 1971, ${ }^{250}$ p.271.
 ${ }^{\text {b }}$ Kolata, 1978. ${ }^{144}$
 ${ }^{\mathrm{c}}$ Golub and Plemmons, 1981, ${ }^{106}$ p.3.
 ${ }^{\text {d }}$ Cullum and Willoughby, 1981, ${ }^{42}$ p. 329; Parlett, 1980, ${ }^{175}$ p. XIII.
 ${ }^{\mathrm{e}}$ Harary, 1971. ${ }^{124}$

[^1]: ${ }^{\mathrm{f}}$ Rose and Willoughby, 1972. ${ }^{198}$
 'Webster's Dictionary, second edition, 1957.
 ${ }^{\text {h}}$ Willoughby, 1971; ${ }^{250}$ Rose and Willoughby, 1972, ${ }^{198}$ Preface; Willoughby, 1972; ${ }^{251}$ Hachtel, 1976, ${ }^{117}$ p. 349.
 ${ }^{\text {i }}$ Willoughby, 1969; ${ }^{249}$ Reid, 1971a; ${ }^{187}$ Rose and Willoughby, 1972; ${ }^{198}$ Bunch and Rose, 1976; ${ }^{28}$ Duff and Stewart, 1979; ${ }^{68}$ Duff, 1981b. ${ }^{61}$ The Proceedings of the Symposium held at Fairfield Glade, Tennessee, in 1982, will be published as a special issue of the SIAM Journal on Scientific and Statistical Computing, and possibly other SIAM journals, to appear in 1983. The Software Catalog prepared in conjunction with the Symposium is available (Heath, 1982. ${ }^{126}$)
 ${ }^{\text {j }}$ Barker, 1977. ${ }^{10}$
 ${ }^{\mathrm{k}}$ Duff, 1977, ${ }^{55} 1982 .{ }^{62}$
 ${ }^{1}$ Wilkinson, 1965; ${ }^{247}$ Parlett, 1980; ${ }^{175}$ George and Liu, 1981. ${ }^{97}$
 ${ }^{\text {m }}$ Björck et al. $1981{ }^{16}$
 ${ }^{\text {n }}$ Brayton et al. 1970; ${ }^{19}$ Willoughby, 1972; ${ }^{251}$ Tewarson, 1973. ${ }^{235}$

[^2]: ${ }^{\circ}$ Duff, 1977, ${ }^{55}$ p. 501.

