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Preface

As computers grow in power and speed, matrices grow in size. In 1968, practical production
calculations with linear algebraic systems of order 5,000 were commonplace, while a “large” system
was one of order 10,000 or more.a

In 1978, an over determined problem with 2.5 million equations in 400,000 unknowns was
reported;b in 1981, the magnitude of the same problem had grown: it had 6,000,000 equations, still
in 400,000 unknowns.c The matrix of coefficients had 2.4×1012 entries, most of which were zero: it
was a sparse matrix. A similar trend toward increasing size is observed in eigenvalue calculations,
where a “large” matrix is one of order 4,900 or 12,000.d Will matrix problems continue to grow
even further? Will our ability to solve them increase at a sufficiently high rate?

But this is only one side of the question. The other side concerns the microcomputer explosion.
Microcomputers now have about the same power as large computers had two decades ago. Are
users constrained to solving matrix problems of the same size as those of twenty years ago?

The owner of a microcomputer may not care too much about the cost of computation; the main
difficulty is storage. On a large machine, the cost of solving a matrix problem increases rapidly
if the size of the problem does, because both storage and labor grow. The overall cost becomes a
primary consideration. How can such cost be minimized for a given problem and installation?

Answers to these and other related questions are given in this book for the following classes of
matrix problems: direct solution of sparse linear algebraic equations, solution of sparse standard
and generalized eigenvalue problems, and sparse matrix algebra. Methods are described which range
from very simple yet surprisingly effective ideas to highly sophisticated algorithms. Sparse matrix
technology is now a well established discipline, which was defined as “the art of handling sparse
matrices”.e It is composed of a beautiful blend of theoretical developments, numerical experience
and practical considerations. It is not only an important computational tool in a broad spectrum

aIn the Preface, the pertinent references are given as footnotes, because this enhances clarity. The full
list of references is given at the end of the book. Tinney, 1969,237 p.28; Willoughby, 1971,250 p.271.

bKolata, 1978.144

cGolub and Plemmons, 1981, 106 p.3.
d Cullum and Willoughby, 1981,42 p. 329; Parlett, 1980,175 p. XIII.
eHarary, 1971.124
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of computational areas,f but also is in itself a valuable contribution to the general development
of computer software. The new ideas developed during the last fifteen years were used to devise
nearly optimum algorithms for a variety of matrix problems. Research in the field is currently very
active and the spectrum of applications broadens continuously. Sparse matrix technology is here
and will stay.

The concept expressing the nature of our concern is contained in the title of the book. Tech-
nology is applied science, the science or study of the practical or industrial arts.g The phrase
“sparse matrix technology” was an everyday saying in the early nineteen seventies at the IBM T. J.
Watson Research Center.h Nowadays it seems to be in desuetude. The material for the book was
selected from the several Symposia and Congresses on large matrix problems regularly held since
1968.i Major sources of inspiration were: an advanced course with four review articles,j excellent
survey articlesk and books,l a collection of papers,m and many publications which are cited where
pertinent. Several basic ideas can be found in the literature published before 1973.n No attempt is
made, however, to cover such an important amount of material. Rather, the fundamental methods
and procedures are introduced and described in detail, the discussion reaching the point where the
reader can understand the specialized literature on each subject. A unified treatment is provided
whenever possible, although, like any field of human knowledge which grows fast, sparse matrix
technology has grown unevenly. Some areas are well developed, while other areas lack further
research. We have not included proofs of all the theorems, except when they are closely related to
practical techniques which are used subsequently. The concepts and methods are introduced at an
elementary level, in many cases with the help of simple examples. Many fundamental algorithms
are described and carefully discussed. Ready-to-use very efficient and professional algorithms are
given in Fortran. The reader is assumed to be familiar with this popular language. The algorithms,
however, are explained so clearly that even a person with a limited knowledge of Fortran can under-
stand them and eventually translate them into other languages. Linear algebra and graph theory
are used extensively in the book. No particular acquaintance with these subjects is necessary be-
cause all definitions and properties are introduced from the beginning, although some preparation

fRose and Willoughby, 1972.198

gWebster’s Dictionary, second edition, 1957.
hWilloughby, 1971;250 Rose and Willoughby, 1972,198 Preface; Willoughby, 1972;251 Hachtel, 1976,117 p.

349.
iWilloughby, 1969;249 Reid, 1971a;187 Rose and Willoughby, 1972;198 Bunch and Rose, 1976;28 Duff and

Stewart, 1979;68 Duff, 1981b.61 The Proceedings of the Symposium held at Fairfield Glade, Tennessee, in
1982, will be published as a special issue of the SIAM Journal on Scientific and Statistical Computing, and
possibly other SIAM journals, to appear in 1983. The Software Catalog prepared in conjunction with the
Symposium is available (Heath, 1982.126)

jBarker, 1977.10

kDuff, 1977,55 1982.62

lWilkinson, 1965;247 Parlett, 1980;175 George and Liu, 1981.97
mBjörck et al. 1981 16

nBrayton et al. 1970; 19 Willoughby, 1972;251 Tewarson, 1973.235
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may be helpful. An extensive bibliography and a survey of the relevant literature are included in
many sections. The book fills the gap between books on the design of computer algorithms and
specialized literature on sparse matrix techniques, on the one side, and user needs and application
oriented requirements on the other.

The purpose of the book is to bring sparse matrix technology within reach of engineers, pro-
grammers, analysts, teachers and students. This book will be found helpful by everyone who wishes
to develop his own sparse matrix software, or who is using it and wishes to understand better how
it operates, or who is planning to acquire a sparse matrix package and wishes to improve his under-
standing of the subject. Teachers who need an elementary presentation of sparse matrix methods
and ideas and many examples of application at a professional level, will find such material in this
book.

Chapter 1 covers all fundamental material such as storage schemes, basic definitions and com-
putational techniques needed for sparse matrix technology. It is very convenient to read at least
Sections 1 to 9 and Section 12 of Chapter 1 first. The first reading may, however, be superficial.
The reader will feel motivated to examine this material in more detail while reading other chapters
of the book, where numerous references to sections of Chapter 1 are found.

Chapters 2 to 5 deal with the solution of linear algebraic equations. They are not independent.
The material in Chapter 2 is rather elementary, but its form of presentation serves as an introduction
for Chapters 4 and 5, which contain the important material. Chapter 3 deals with numerical errors
in the case where the linear system is sparse, and also serves as an introduction to Chapters 4
and 5. This material is not standard in the literature. Sparse matrix methods and algorithms for
the direct solution of linear equations are presented in Chapters 4 and 5. Chapter 4 deals with
symmetric matrices, and Chapter 5 with general matrices.

The calculation of eigenvalues and eigenvectors of a sparse matrix, or of a pair of sparse matrices
in the case of a generalized eigenvalue problem, is discussed in Chapter 6. Chapter 6 can be read
independently, except that some references are made to material in Chapters 1 and 7.

Chapters 7, 8 and 9 deal with sparse matrices stored in row-wise format. Algorithms for
algebraic operations, triangular factorization and back substitution are explicitly given in Fortran
and carefully discussed in Chapter 7. The material in Chapter 1 is a prerequisite, particularly
Sections 8, 9 and 10 and 12 to 17. In addition, Chapter 2 is a prerequisite for Sections 23 to
28 of Chapter 7. Chapter 8 covers the sparse matrix techniques associated with mesh problems,
in particular with the finite element method, and in Chapter 9 we present some general purpose
Fortran algorithms.

Sparse matrix technology has been applied to almost every area where matrices are employed.
Anyone interested in a particular application may find it helpful to read the literature where
the application is described in detail, in addition to the relevant chapters of this book. A list
of bibliographical references sorted by application was publishedo and many papers describing a

oDuff, 1977,55 p. 501.
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variety of applications can be found in the Proceedings of the 1980 IMA Conferencep and in other
publicationsq

Good, robust sparse matrix software is now commercially available. The Sparse Matrix Software
Catalogr lists more than 120 programs. Many subroutines are described in the Harwell Catalogues

and two surveys have also been published.t Producing a good piece of sparse matrix software
is not an easy task. It requires expert programming skills. As in any field of engineering, the
software designer must build a prototype, test it carefullyu and improve it before the final product
is obtained and mass production starts. In software engineering, mass production is equivalent
to obtaining multiple copies of a program and implementing them in many different installations.
This requires transportability. From the point of view of the user, the software engineer must
assume responsibility for choosing the right program and file structures and installing them into
the computer. For the user, the product is not the program but the result. The desirable attributes
of a good program are not easily achieved.v In this book, the characteristics and availability of
software for each particular application are discussed in the corresponding sections.

I would like to acknowledge the collaboration of Neil Callwood. He has read the manuscript
several times, correcting many of my grammatical infelicities, and is responsible for the “British
flavour” that the reader may find in some passages. I would also like to acknowledge the patience
and dedication Mrs. Carlota R. Glücklich while typing the manuscript and coping with our revi-
sions.

Sergio Pissanetzky January 1984
Sergio@SciControls.com

pDuff, 1981b.61

qBunch and Rose, 1976;28 Duff and Stewart, 1979. 68

rHeath, 1982.126

sHopper, 1980.130

tDuff, 1982;62 Parlett, 1983. 176

uDuff, 1979;57 Eisenstat et al. 1979;75 Duff et al. 1982.69
vGentleman and George, 1976;87 Silvester, 1980.215
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1 2 3 4 5

1 |A11 A13 A14 |
2 | A22 A25 |
3 | A33 A35 |
4 | A44 |
5 | A55 |

A =

symmetric

head 1

head 2

head 3

head 4

head 5

A11 0 • A13 0 • A14 0 0

A22 0 • A25 0 0

A33 • • A35 • 0

A44 • 0

A55 • 0

Figure 1.4: Larcombe’s version of Knuth’s storage scheme for symmetric matrices with
no zero elements on the diagonal.

1.8 The sparse row-wise format

The sparse row-wise format (Chang, 1969;29 Curtis and Reid, 1971b;46 Gustavson, 1972112) to
be described here is one of the most commonly used storage schemes for sparse matrices. The
scheme has minimal storage requirements and at the same time it has proved to be very convenient
for several important operations such as addition, multiplication, permutation and transposition
of sparse matrices, the solution of linear equations with a sparse matrix of coefficients by either
direct or iterative methods, etc. In this scheme, the values of the nonzero elements of the matrix
are stored by rows, along with their corresponding column indices, in two arrays, say AN and JA,
respectively. An array of pointers, say IA, is also provided to indicate the locations in AN and
JA where the description of each row begins. An extra entry in IA contains a pointer to the first
empty position in JA and AN. An example is convenient at this point. Consider the matrix:

A =

1 2 3 4 5 6 7 8 9 10

1 | 0 0 1. 3. 0 0 0 5. 0 0 |
2 | 0 0 0 0 0 0 0 0 0 0 |
3 | 0 0 0 0 0 7. 0 1. 0 0 |
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A is represented as follows:

1 2 3 4 5 6

IA = 1 4 4 6
JA = 3 4 8 6 8 RR(C)O
AN = 1. 3. 5. 7. 1.

The description of row 1 of A begins at the position IA(1) = 1 of AN and JA. Since the description
of row 2 begins at IA(2) = 4, this means that row 1 of A is described in positions 1, 2 and 3 of AN
and JA. In this example:
IA(1) = 1 first row begins at JA(1) and AN(1).
IA(2) = 4 second row begins at JA(4) and AN(4)
IA(3) = 4 third row begins at JA(4) and AN(4). Since this is the same position at

which row 2 begins, this means that row 2 is empty.
IA(4) = 6 this is the first empty location in JA and AN. The description of row 3

thus ends at position 6− 1 = 5 of JA and AN.
In general, row r of A is described in positions IA(r) to IA(r + 1)− 1 of JA and AN, except when
IA(r + 1) = IA(r) in which case row r is empty. If matrix A has m rows, then IA has m + 1
positions.

This representation is said to be complete because the entire matrix A is represented, and
ordered because the elements of each row are stored in the ascending order of their column indices.
It is thus a Row-wise Representation Complete and Ordered, or RR(C)O.

The arrays IA and JA represent the structure of A, given as the set of the adjacency lists of
the graph associated with A. If an algorithm is divided into a symbolic section and a numerical
section (Section 1.12), the arrays IA and JA are computed by the symbolic section, and the array
AN by the numerical section.

Gustavson (1972)112 also proposed a variant of row-wise storage, suitable for applications re-
quiring both row and column operations. A is stored row-wise as described, and in addition the
structure of AT is computed and also stored row-wise. A row-wise representation of the structure
of AT is identical to a column-wise representation of the structure of A. It can be obtained by
transposition of the row-wise structure of A (Chapter 7). This scheme has been used, for example,
for linear programming applications (Reid, 1976).189

A much simpler row-oriented scheme was proposed by Key (1973)141 for unsymmetric matrices.
The nonzeros are held in a two-dimensional array of size n by m, where n is the order of the matrix
and m the maximum number of nonzeros in a row. This scheme is easy to manipulate but has the
disadvantage that m may not be predictable and may turn out to be large.

1.9 Ordered and unordered representations

Sparse matrix representations do not necessarily have to be ordered, in the sense that the elements
of each row can be stored in any order while still preserving the order of the rows. The matrix A
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The kth step consists of the elimination of the nonzeros on column k of A(k) both above and below
the diagonal. Row k is first normalized by dividing all its elements by the diagonal element. Then,
convenient multiples of the normalized row k are subtracted from all those rows which have a
nonzero in column k either above or below the diagonal. The matrix A(k+1) is thus obtained with
zeros in its k initial columns. This process is continued until, at the end of step n, the identity
matrix A(n+1) ≡ I is obtained. The kth step of Gauss-Jordan elimination by columns is equivalent
to pre-multiplication of A(k) by D−1

k and by the complete column elementary matrix (TC
k )−1:

A(k+1) = (TC
k )−1D−1

k A(k) (2.37)

where A(1) ≡ A and:

(Dk)kk = A
(k)
kk (2.38)

(TC
k )ik = A

(k)
ik for all i 6= k

Thus, we have:

(TC
n )−1D−1

n . . . (TC
2 )−1D−1

2 (TC
1 )−1D−1

1 A = I. (2.39)

The factorized form of A is:

A = D1T
C
1 D2T

C
2 . . .DnTC

n , (2.40)

and the product form of the inverse in terms of column matrices is:

A−1 = (TC
n )−1D−1

n . . . (TC
2 )−1D−1

2 (TC
1 )−1D−1

1 . (2.41)

The close relationship between this expression and the elimination form of the inverse, Expression
(2.24), will be discussed in Section 2.10. The results of the elimination are usually recorded as a
table of factors:

(D1)−1
11 (TC

2 )12 (TC
3 )13 . . .

(TC
1 )21 (D2)−1

22 (TC
3 )23 (2.42)

(TC
1 )31 (TC

2 )32 (D3)−1
33

...
...

...

By Equation (2.38), this table is formed simply by leaving each off-diagonal A
(k)
ik where it is

obtained. The diagonal is obtained, as in Gauss elimination, by storing the reciprocals of the
diagonal elements used to normalize each row. The lower triangle and diagonal of this table are
thus identical to those of the Gauss table. Expressions (2.40) and (2.41) indicate how to use the
table (2.42). When solving linear equations by means of x = A−1b, Equation (2.41) is used, with
the matrices (TC

k )−1 obtained from the table by reversing the signs of the off-diagonal elements of
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column k (Property 2.4(d)). The matrices D−1
k are directly available from the table. The product

of A with any matrix or vector can also be computed using the table, as indicated by Equation
(2.40).

Gauss-Jordan elimination can also be performed by rows. The version by columns requires
the addition of multiples of row k to all other rows in order to cancel the off-diagonal elements
of column k. This process can be understood conceptually as the construction of new equations
which are linear combinations of the original ones. On the other hand, in Gauss-Jordan elimination
by rows, we add multiples of column k to all other columns, in such a way that the off-diagonal
elements of row k become zero. This process can be viewed as the construction of new unknowns
which are linear combinations of the original ones and which satisfy linear equations with some
zero coefficients. Alternatively, we can forget about the system of linear equations and view the
row algorithm as the triangularization of AT , the transpose of A, by columns. Doing this, we obtain
the equivalent of Expression (2.41):

(AT )−1 = (T′Cn )−1(D′n)−1 . . . (T′C2 )−1(D′2)
−1(T′C1 )−1(D′1)

−1, (2.43)

which by transposition and using (AT )−1 = (A−1)T yields:

A−1 = (D′1)
−1(T′R1 )−1(D′2)

−1(T′R2 )−1 . . . (D′n)−1(T′Rn )−1 (2.44)

Equation (2.44) is the product form of the inverse in terms of row matrices. The elimination by
rows is equivalent to multiplying A from the right by Expression (2.44). The nontrivial elements
of the matrices of Expression (2.44) are recorded as a table of factors in the usual way, and the
table can be used to solve linear equations or to multiply either A or A−1 by any matrix or vector.

2.10 Relation between the elimination form of the in-

verse and the product form of the inverse

From the preceding section it should be clear that Gauss-Jordan elimination by columns can be
performed equally well if we first eliminate all nonzeros from the lower triangle of A, and then all
nonzeros from the upper triangle of A. In fact, when we start at the upper left-hand corner of
A, we can eliminate lower and upper portions of columns in any order, provided only that upper
portions are eliminated in order, lower portions are also eliminated in order, and the upper portion
of any column k is eliminated after the lower portion of the preceding column. This statement
holds true due to the fact that a row k + 1 is obtained in final form immediately after the lower
portions of columns 1 to k have been eliminated and row k + 1 has been normalized; row k + 1
can then be used either immediately or at any later stage to eliminate the upper portion of column
k + 1, provided that the upper portions of columns 1 to k have been previously eliminated. These
facts can be stated formally using the properties of the elementary matrices (Section 2.4). We use
Property 2.4(c) to express TC

k as follows:

TC
k = LC

k UC
k , (2.45)
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Table 3.1. Bounds for the norms of L, expression for nij (see Equation 2.16), and
bounds for the norm of the error matrix E for the factorization LU = A + E, where all
matrices are of order n. The bandwidth of band matrices is assumed not to exceed n.

A Bounds for L nij Error bounds for factorization

Sparse ‖L‖1 ≤ aM

(
maxj cL

j + 1
) ∑m

k=1 n
(k)
ij ‖E‖1 ≤ 3.01εMaM maxj

∑n
i=1 nij

‖L‖∞ ≤ aM

(
maxi rL

i + 1
)

m = min(i, j) ‖E‖∞ ≤ 3.01εMaM maxi

∑n
j=1 nij

Full ‖L‖1 ≤ aMn min(i, j) ‖E‖1, ‖E‖∞ ≤ 3.01
2 εMaMn(n + 1)

‖L‖∞ ≤ aMn

Band ‖L‖1 ≤ aM (β + 1) max[0,min(i, j, i− j + β + 1, ‖E‖1, ‖E‖∞ ≤ 3.01εMaM (β + 1)2

|\β\β\| ‖L‖∞ ≤ aM (β + 1) j − i + β + 1)]

Band ‖L‖1 ≤ aM (β + 1) max[0,min(i, j, i− j + 2β + 1, ‖E‖1, ‖E‖∞ ≤ 3.01εMaM (β + 1)

|\β\2β\| ‖L‖∞ ≤ aM (β + 1) j − i + β + 1, β + 1)] ×(2β + 1)

Then, the computed result w satisfies the exact relation:

Lw = b + δb (3.52)

where, from Equations 3.47 and 3.50, the following bounds hold for the components of δb:

|δbi| ≤ 3.01εMbMi(rL
i + 1). (3.53)

A less tight but simpler bound is obtained if bM is the absolute value of the largest element of all
the vectors b(k), so that bMi ≤ bM and:

|b(k)
i | ≤ bM ; i = 1, 2, . . . , n; k ≤ i. (3.54)

Then:

|δbi| ≤ 3.01εMbM (rL
i + 1). (3.55)

Backward substitution is the solution of Ux = w. It can be viewed as an algorithm with n steps,
where the sequence of vectors w(n) ≡ w,w(n−1), . . . ,w(2),w(1) is computed, with w(k) and w(k−1)

having their components k to n identical. Step k, k = n, n− 1, . . . , 1, is:

xk = w
(k)
k

w
(k−1)
i = w

(k)
i − Uikxk + g

(k)
i ; i = 1, . . . , k − 1, (3.56)
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where g
(k)
i is the error introduced by the floating point computation. The operations performed on

an element wi, i < n, are:

wi − Uinxn + g
(n)
i + g

(n)
i − Ui,n−1xn−1 + g

(n−1)
i − . . .− Ui,i+1xi+1 + g

(i+1)
i = xi (3.57)

or:

wi +
n∑

k=i+1

g
(k)
i =

n∑
k=i

Uikxk; i < n, (3.58)

Thus, if we define the error vector δw:

δwi =
n∑

k=i+1

g
(k)
i ; i < n

δwn = 0, (3.59)

we have the following exact relation between the computed numbers:

Ux = w + δw. (3.60)

In order to obtain bounds for δw, we let wMi = maxk |w
(k)
i |, so that:

|w(k)
i | ≤ wMi; 1 ≤ i ≤ n; i ≤ k ≤ n. (3.61)

In particular, for k = i, w
(i)
i = xi, so that |xi| ≤ wMi. We also let wM be the largest wMi; therefore:

|w(k)
i | ≤ wM ; i = 1, 2, . . . , n; k ≥ i. (3.62)

Then, using Equation 3.22:

|g(k)
i | ≤ 3.01εMwMi; k > i (3.63)

and

|δwi| ≤ 3.01εMwMir
U
i , (3.64)

where rU
i is the number of off-diagonal nonzeros in row i of U. Alternatively, using Equation 3.62:

|δwi| ≤ 3.01εMwMrU
i . (3.65)

Finally, we consider the residual

r = Ax− b (3.66)
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obtained when the solution x of System 3.1 is computed using floating point arithmetic. Using
Equations 3.41, 3.52 and 3.60, we obtain:

r = −Ex + Lδw + δb. (3.67)

Taking the 1-norm or the ∞-norm, we have:

‖r‖ ≤ ‖E‖‖x‖+ ‖L‖‖δw‖+ ‖δb‖. (3.68)

From Equation 3.62 we obtain bounds for the norms of x:

‖x‖1 ≤ nwM

‖x‖∞ ≤ wM . (3.69)

Bounds for the norms of E and L are given in table 3.1. Bounds for the norms of δw and δb were
obtained from Equations 3.65 and 3.55, respectively, and are listed in Table 3.2. Thus, a bound for
‖r‖ can be computed using Equation 3.68.

The residual r has another interpretation. Let x̃ be the exact solution of Equation 3.1; then
Ax̃ = b and

r = A(x− x̃), (3.70)

Table 3.2. Values of some parameters and bounds for the norms δb and δw for
forward and backward substitution.

A Parameters of Section 3.4 Forward substitution Backward substitution
Sparse See Section 3.4 ‖δb‖1 ≤ 3.01εMbMnL ‖δw‖1 ≤ 3.01εMwMn′U

‖δb‖∞ ≤ 3.01εMbM

(
maxi rL

i + 1
)
‖δw‖∞ ≤ 3.01εMwM maxi rU

i

Full rL
i = i− 1 ‖δb‖1 ≤ (3.01/2)εMbMn(n + 1) ‖δw‖1 ≤ (3.01/2)εMwMn(n− 1)

rU
i = n− i ‖δb‖∞ ≤ 3.01εMbMn ‖δw‖∞ ≤ 3.01εMwM (n− 1)

nL = n(n + 1)/2
n′U = n(n− 1)/2

Band rL
i = min(i− 1, β) ‖δb‖1 ≤ 3.01εMbM (n− β/2)(β + 1) ‖δw‖1 ≤ 3.01εMwM (n− β/2− 1/2)β

|\β\β\| rU
i = min(n− i, β) ‖δb‖∞ ≤ 3.01εMbM (β + 1) ‖δw‖∞ ≤ 3.01εMwMβ

nL = (n− β/2)(β + 1)
n′U = (n− β/2− 1/2)β

Band rL
i = min(i− 1, β) ‖δb‖1 ≤ 3.01εMbM (n− β/2)(β + 1) ‖δw‖1 ≤ 3.01εMwM (2n− 2β − 1)β

|\β\2β\| rU
i = min(n− i, 2β) ‖δb‖∞ ≤ 3.01εMbM (β + 1) ‖δw‖∞ ≤ 6.02εMwMβ

nL = (n− β/2)(β + 1)
n′U = (2n− 2β − 1)β
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spondence between fill-ins and new edges added to the graph is evident. The reader can finish the
exercise.
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A
(2) =

1 2 3 4 5 6 7 8 9 10 11
1 |× × × |
2 | × × × |
3 | × × × × |
4 | × × × |
5 | × × × |
6 | × ×⊗ |
7 | ×× × × |
8 | × × × |
9 | × × × × |

10 | ⊗ ×× |
11 | × ××××× |

A
(3) =

1 2 3 4 5 6 7 8 9 10 11
1 |× × × |
2 | × × × |
3 | × × × × |
4 | × × ⊗ |
5 | × × × |
6 | × ×⊗ |
7 | ×× × × |
8 | × × × |
9 | ⊗ × × × |

10 | ⊗ ×× |
11 | × ××××× |

A
(4) =

1 2 3 4 5 6 7 8 9 10 11
1 |× × × |
2 | × × × |
3 | × × × × |
4 | × × ⊗ |
5 | × ⊗× ⊗ |
6 | × ×⊗ |
7 | ×⊗ × × |
8 | × × × |
9 | ⊗ × × × |

10 | ⊗ ×× |
11 | ⊗ ××××× |

Figure 4.8: The three initial elimination steps and the corresponding elimi-
nation graphs for the matrix of Fig. 4.1(a). Fill-ins are encircled.

In terms of graph theory, Parter’s rule says that the adjacent set of vertex k becomes a clique
when vertex k is eliminated. Thus, Gauss elimination generates cliques systematically. Later, as
elimination progresses, cliques grow or sets of cliques join to form larger cliques, a process known
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Y = {14, 16, 1, 7} and finds that Y has adjacent vertices in L5 which have not yet been placed
in any partition. Thus S = {7} is pushed onto the stack and the algorithm branches to Step 5,
where, picking v5 = 13, it is found that the path can not be prolonged any longer, so t = 1. Letting
S = {13}, the algorithm continues with Step 1, where S is not modified, and with Step 2, where Y
is determined to be {13, 15}, which becomes the third partition member.

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 |× × × |
2 | × ×× ×× |
3 | × × × |
4 | × × ×× |
5 | ××× × |
6 | ×× × |
7 |× × × × × |
8 | × ×× × |
9 | × ××× × |

10 | × ××× ×× |
11 |× × ×× × × × |
12 | × × × |
13 | ××× |
14 | × ×××× |
15 | ××× |
16 |× × × × |
17 | × × × ×× |
18 | × × ×× ×× |
19 | × ××× × |
20 | ××× × |

(b)

6 20 5 15 13 16 1 14 7 12 4 11 17 18 2 10 3 9 19 8

6 |××× |
20 |××× × |
5 |××× × |

15 | ×× × |
13 | ×× × |
16 | ××× × |
1 | ×× × × |

14 | ××× × × |
7 | ×× × × × |

12 | ×× × |
4 | ×× ×× |

11 | ×××× × × × |
17 | ×× ××× |
18 | ×××××× |
2 | ×××× × |

10 | × ××× ×× |
3 | × ×× |
9 | ×× ××× |

19 | ××××× |
8 | ×××× |

Figure 4.12: The Refined Quotient Tree algorithm. (a) Structure of the
matrix corresponding to the graph of Fig. 4.2(a). (b) The permuted block
matrix corresponding to the quotient tree of Fig. 4.2(c).
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Table 4.1

Class of graphs Bound for fill-in Bound for multipli-
cation count

Observations and references

Any, such that σ = 1/2 c3n log2 n + O(n) c7n
3/2 + O[n(log n)2]

Ordering time is O[(m+n) log n]
if separators can be found in
O(m + n) time. c3 and c7 given
by Eq. 4.23 (Lipton et al.,
1977152

Planar graphs (in this case σ =
1/2, α = 2/3, β = 2

√
2) c3n log n + O(n) c7n

3/2 + O[n(log n)2]

c3 ≤ 129, c7 ≤ 4002. Ordering
time is O(n log n) (Lipton and
Tarjan, 1979151; Lipton et al.,
1979153)

Two-dimensional finite element
graphs (in this case σ = 1/2, α =
2/3, β = 4bk/2c)

O(k2n log n) O(k3n3/2)

k is the maximum number of
boundary nodes of the elements.
Ordering time is O(n log n) (Lip-
ton et al., 1979153)

Regular planar grid 31
8 n log2 n + O(n) 829

84 n3/2 + O(n log2 n) (George and Liu, 198197)

Any such that σ > 1/2 O(n2σ) O(n3σ) (Lipton et al., 1979153)
Three-dimensional grid graphs
(in this case σ = 2/3) O(n4/3) O(n2) (Lipton et al., 1979153)

Any, such that 1/3 < σ < 1/2 O(n) O(n3σ) (Lipton et al., 1979153)

Any, such that σ = 1/3 O(n) O(n log2 n) (Lipton et al., 1979153)

Any, such that σ < 1/3 O(n) O(n) (Lipton et al., 1979153)

The idea is illustrated in Fig. 4.19(a), where the rectangle represents the set of nodes of a
two-dimensional finite element grid. Choose σ small separators (σ = 3 in the figure) which consist
of grid lines and dissect the grid into σ+1 blocks R1, R2, . . . of comparable size. If all separators are
considered to form another single block, a tree partitioning is obtained as shown by the quotient tree
of Fig. 4.19(b). The advantages of tree partitioning regarding the reduction of fill-in and operation
count were discussed in Section 4.9. Now, let us number the nodes of each R-set sequentially,
following lines from left to right as closely as possible, and starting at the bottom left as indicated
by the arrows. When all R-sets have been numbered, the separators are also numbered sequentially,
as the arrows show. The numbering corresponds to a monotone ordering of the tree. The matrix
associated with the finite element grid is partitioned into blocks as shown in Fig. 4.19(c), where
all nonzeros are confined to the cross-hatched areas. If Gauss elimination is performed on this
matrix, fill-in will result only inside the cross-hatched areas and in the dotted areas. Besides, the
hatched blocks are not completely full. For example, the four leading diagonal blocks are banded.



ORDERING FOR GAUSS ELIMINATION: SYMMETRIC MATRICES 135

17

4

12

18

2

9

19

8

3

10

11

14

13

15

16 1 7

5

20

6

12

11

10

18

17

16

15

14

13

19

20

9

2

1

8 7 6

5

4

3

(a)

1513 6 20 5 7 1 161412 4 17 3 8 19 9 2 181011

15|×× × |
13|×× × |
6| ××× |

20| ×××× |
5| ×××× |
7| ×××× ×|
1| ××× ×|

16| ××× ×|
14|×× ×× ×|
12| ××× |
4| ××× × |

17| ××× ×× |
3| ××× |
8| ×××× |

19| ×××× × |
9| ×××× × |
2| × ×××× |

18| ×× ××××|
10| ××××××|
11| ×××× ×××|

(b)

Figure 4.25: Reverse depth-first ordering, short frond strategy, for the graph of Fig. 4.2(a).

in favor of vertex 19, which is adjacent to two visited vertices: 9 and 10. The reader may continue
the search and verify that the spanning tree and reverse depth-first ordering shown in Fig. 4.25(a)
may be obtained. The separators (11), (10, 18, 2) and (14) can be immediately identified. The
corresponding permuted matrix is shown in Fig. 4.25(b). No fill-in at all is produced by elimination
on this matrix, a result obtained at a very low computational cost. The reason why an ordering
with no fill-in exists for the graph of Fig. 4.2(a) is that this graph is triangulated (Rose, 1970194),
see Section 4.16.

Now consider the application of the long frond strategy to the same graph. Again 11 is the
starting vertex. Vertices 10 and 18 are the next candidates, both of degree 5. We arbitrarily select
vertex 10. At this point Vv = {11, 10}, and vertices 18, 2, 9 and 19 all have three edges leading
to vertices not in Vv. Vertex 18 is discarded because it is adjacent to both visited vertices, while
2, 9 and 19 are adjacent to only one of the visited vertices. Let us choose vertex 2 to be the next
vertex to visit.

At this point Vv = {11, 10, 2} and |Adj(w)− Vv| is equal to 3, 2 and 2 for vertices 17, 18 and 9,
respectively. Thus, we select vertex 17. Next is vertex 4, which introduces two new edges (while 12
or 18 would have introduced only one), and finally vertex 12, which is adjacent to only two visited
vertices (while 18 is adjacent to five). On backtracking to vertex 4 we find the tree arc (4, 18).
Figure 4.26(a) shows one possible ordering obtained in this way. The four separators (11), (10, 2),
(17, 4) and (14) can be identified. As expected, this strategy has produced more separators than
the short frond strategy. The corresponding permuted matrix is shown in Fig. 4.26(b). Elimination
would produce 10 fill-ins in this matrix.
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(b)

Figure 4.26: Reverse depth-first ordering, long frond strategy, for the graph of Fig. 4.2(a).

When the user is dealing with a large problem, a sophisticated ordering algorithm may be
convenient, and may even determine whether the problem is tractable or not. For a medium-size
problem, a simple ordering technique may often produce a large improvement as compared with
no ordering at all, at a low programming cost.

4.16 Lexicographic search

In this section we continue the analysis of low fill orderings for symmetric matrices, but now from
a different point of view. We consider a special class of matrices which can be ordered in such a
way that Gauss elimination would cause no fill-in. Then we take advantage of the properties of
such matrices to give a procedure which finds a low fill ordering for any symmetric matrix. As
usual, we discuss the ideas in terms of graph theory. Let GA = (V,E) be the undirected graph
associated with a symmetric matrix A, and let GF = (V,E ∪ F ) be the corresponding filled graph
associated with U + UT , where A = UT DU is the factorization of A and F is the set of new edges
(or nonzeros of U) introduced during factorization. If the graph GA has an elimination ordering for
which F = ∅, i.e., no fill-in is produced if elimination is carried out in that order, we say that GA is
a perfect elimination graph. The ordering itself is called a perfect elimination ordering. Note
that fill-in may result if we eliminate in a different order, even when GA is a perfect elimination
graph. Note also that every elimination graph GF is a perfect elimination graph since no fill-in
would result if elimination were performed again in the same order.



Chapter 6

Sparse Eigenanalysis

6.1 Introduction

The standard eigenvalue problem is defined by

Ax = λx (6.1)

where A is the given n by n matrix. It is desired to find the eigenpairs (λ,x) of A, where λ is an
eigenvalue and x is the corresponding eigenvector. The generalized eigenvalue problem is

Ax = λ Bx (6.2)

where A and B are given n by n matrices and again we wish to determine λ and x. For historical
reasons the pair A,B is called a pencil (Gantmacher, 195983). When B = I the generalized problem
reduces to the standard one.

Both for simplicity and to follow the general trend imposed by most of the literature and existing
software, we restrict the analysis to the case where A is real symmetric and B is real symmetric and
positive definite, except when stated otherwise. Almost all the results become valid for hermitian
matrices when the conjugate transpose superscript H is written in place of the transpose superscript
T . On the other hand, an eigenvalue problem where A or A and B, are hermitian, can be solved
using software for real matrices (Section 6.15).

Equation 6.1 has a nonzero solution x when

Det(A− λ I) = 0. (6.3)

This is a polynomial equation of the nth degree in λ, which has n roots λ1, λ2, . . . , λn. The roots
are the eigenvalues of A, and they may be either all different or there may be multiple roots with
any multiplicity. When A is real symmetric, the eigenvalues are all real. The simplest example is
the identity matrix I, which has an eigenvalue equal to 1 with multiplicity n. To each eigenvalue

177
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array of pointers IC at lines 5 and 24. The multiple switch array IX is initialized to 0 at lines 2 and
3. I, defined at line 4, identifies each row. The DO 20 loop scans row I of the first given matrix:
the column indices, if any, are stored in JC at line 11 and the row index is stored in IX at line 13,
thus turning “on” the corresponding switch. The DO 40 loop runs over row I of the second matrix.
For each column index J, defined at line 18, the multiple switch is tested at line 19: if the value
of IX(J) is I, then the switch is on, which means that J has already been added to the list JC
and should not be added again. Otherwise, J is added to JC at line 20. The reader may expect
that the sentence IX(J)=I should appear between lines 21 and 22 in order to record the fact that
the column index J has been added to the list JC. However, such a record is now not necessary
because, during the processing of row I, the same value of J will never be found again: there are
no repeated column indices in the representation of row I in the array JB.

7.11 Algorithm for the numerical addition of two sparse

matrices with N rows

Input: IA, JA, AN first given matrix in RR(C)U.

IB, JB, BN second given matrix in RR(C)U.

IC, JC structure of the resulting matrix in RR(C)U.

N number of rows of the matrices.

Output: CN numerical values of the nonzeros of the resulting matrix.

Workspace: X expanded array used to accumulate the nonzeros; the dimension of X
is M, the number of columns of the matrices.

1. DO 70 I=1,N
2. IH=I+1
3. ICA=IC(I)
4. ICB=IC(IH)-1
5. IF(ICB.LT.ICA)GO TO 70
6. DO 10 IP=ICA,ICB
7. 10 X(JC(IP))=0.
8. IAA=IA(I)
9. IAB=IA(IH)-1
10. IF(IAB.LT.IAA)GO TO 30
11. DO 20 IP=IAA,IAB
12. 20 X(JA(IP))=AN(IP)
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Algebraic equations

linear, 35
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Almost-planar graph, 92, 122
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data structure, 8
storage, 5
switch, 29
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Planar embedding, 88
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Plane rotation, 186
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Sparse vectors
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implicit, 24
Knuth-Rheinboldt-Mesztenyi, 17
Knuth scheme, 16
KRM, 17
linked sparse schemes, 15
of arrays, 5
of band matrices, 12
of graphs, 10
of integers, 8
of lists, 5
of lists of integers, 8
of queues, 5
of stacks, 5

of symmetric matrices, 14
overhead, 15
packed, 30
skyline, 15
sparse row-wise format, 19
supersparse, 26
variable band, 14

Strong component, 145, 148–151, 167, 168
root, 153

Strongly connected component, 148
Strongly connected digraph, 148
Structure of a matrix, 16, 20
Sturm sequence, 184
Subgraph, 88
Subspace, 194

invariant, 190, 194
iteration, 196
Krylov, 199

Substitution
backward, 48, 56–57
error bounds for, 76
errors in, 73–77
forward, 48, 56–57

Substructure
rooted, 155

Substructuring, 130
Super-element, 130
Supersparse storage, 26
Switch, 29

array, 29
multiple, 29
phase counter, 30

Switch array, 29
Switch technique

multiple, 29–30
Sylvester’s inertia theorem, 184
Symbolic

nullity, 159
Symbolic assembly algorithm, 259–260
Symbolic processing, 26
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Symbolic rank, 159
Symbolic section, 26
Symbolic singular matrix, 159
Symbolic triangular factorization

algorithm, 240–242
in row-wise format, 235

Symmetric
difference, 162

Symmetric indefinite system
ordering, 140–141

Symmetric matrices
envelope storage, 14

Symmetric matrix, 37
System

augmented, 132
diakoptical, 131

Table of factors, 43, 47, 51
Tarjan’s algorithm, 168–172
Terminal members, 114
Terminator, 6
Threshold pivoting, 80
Threshold vector, 204
Tolerance, 80
Top of stack, 7
Trace, 183
Trace minimization, 208
Transforming a representation, 278
Transmitter, 146
Transportability, 212
Transposition of a matrix, 213–215

algorithm, 215–216
Transversal, 18, 145, 146, 158
Tree, 90

nested dissection, 114
partitioning, 109–113
quotient, 90
rooted, 90
spanning, 92

Tree arc, 93, 133, 152, 155

redundant, 154
Tree partitioning, 91
Triangular factorization, 22, 35

in row-wise format, 235–245
numerical, 238–239
numerical algorithm, 242–245
symbolic algorithm, 240–242

Triangular matrices, 40
properties, 42–44

Triangulated graph, 137
Triangulation, 137
Tridiagonal matrix, 185

eigenanalysis of, 189
eigenanalysis of unsymmetric, 189

Triple, 16

Undirected graph, 10, 87
breadth-first search, 93–95
depth-first search, 132–136

Uni-frontal method, 130
Unit diagonal matrix, 40
Unordered representation, 20–22
Unsymmetric band matrix pivoting, 175
Unsymmetric eigenproblem, 210
Unsymmetric matrix, 37

graph theory, 146–148
pivoting strategies for, 172–175

Unsymmetric system software, 175
Upper almost-triangular matrix, 185
Upper column elementary matrix, 41
Upper Hessenberg matrix, 185
Upper triangular matrix, 22, 40

Variable band, 14
Variable length records, 28
Vectors

addition, 30–32
Vertex, 10, 87

adjacent, 10
degree, 11

Vertex collapsing, 167
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Wavefront, 15
Width

of level structure, 155

Zero-nonzero pattern, 16
Zlatev’s pivoting, 81

improved, 81


