
//——————————————————————–

void Vector3::SetComponents(c
onst Vector3 & other){

components[0] = other.components[0];

components[1] = other.components[1];

components[2] = other.components[2];

}

//SetComponents

//——————————————————————–

double Vector3::Angle(const Vector3 & q){

//Calculates the angle between this and q (radians, range 0 ¡= angle ¡= pi).

double cosa = DotVector(q);

double sina = (CrossVector(q)).G
etMyLength();

double alfa = atan2(sin
a, cosa); //range 0 to pi (because sina ¿= 0).

return alfa;

}

//Angle

//——————————————————————–

Vector3 Vector3::GenerateArbitraryNormal()const{

//Generate an arbitrary unit vector that is perpendicular to this vector in 3D space.

Vector3 mm;

if(fa
bs(components[0]) ¡= fabs(components[1]) && fabs(components[0]) ¡= fabs(components[2])){

mm.SetComponents(0
.0, components[2], -components[1]);

}
else if(fa

bs(components[1]) ¡= fabs(components[0]) && fabs(components[1]) ¡= fabs(components[2])){

mm.SetComponents(-c
omponents[2], 0.0, components[0]);

}
else{ mm.SetComponents(c

omponents[1], -components[0], 0.0);

}
mm.MakeMeUnit();

return mm;

}

//GenerateArbitraryNormal

//——————————————————————–

Vector3 Vector3::operator-(const Vector3 & uu)const{

return Vector3(components[0] - uu.components[0], components[1] - uu.components[1], components[2] - uu.components[2]);

}

//operator-

//——————————————————————–

void Vector3::MakeMeZero(){

components[0] = 0.0;

components[1] = 0.0;

components[2] = 0.0;

}

//MakeMeZero

//——————————————————————–

Vector3 Vector3::DoubleCrossVector(const Vector3 & uu)const{

//Calculate me X (me X uu).

double AC = components[0] * uu.components[0] + components[1] * uu.components[1] + components[2] * uu.components[2];

double AA = components[0] * components[0] + components[1] * components[1] + components[2] * components[2];

return ((*this) * AC - uu * AA);

}

//DoubleCrossVector

//——————————————————————–
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Preface

A cow’s legs are very long, they reach all the way to the ground.
Anonymous. My best attempt at explaining that programs, too, have a foundation.

This book is an introduction to the Relational Model of Computer Programs and one of its many
applications: the automatic polyglot refactoring of computer software. Refactoring is frequently
defined as a behavior-preserving source-to-source transformation of a computer program, performed
with the purpose of improving the quality of code. There are several problems with this definition.
We can “develop” a program, “compile” a program, “buy” or “sell” a program, “install” a program,
“execute” a program. Clearly, refactoring does not transform the program, only its source code.
The program is not the same as the code.

There are no precise definitions of “behavior” or “quality”. Without them, we don’t know
exactly what it is that we are trying to preserve, or to improve, and we can’t automate refactoring.

As a consequence, refactoring is still perceived as a mostly manual, last resort operation, danger-
ous, expensive and error-prone. The fear of change originates from insufficient control. Tools have
been slow to appear. The few existing tools are language-specific, cover only light refactorings, and
leave the critical determinations of quality and behavior to the user. Several are not dependable
because of the bugs they contain [17].

There is no generally accepted theory of refactoring. Some theories model the source code, not
the program, and try to preserve as much of the source code as possible. And there is a literature
explosion. Several books teach developers how to refactor or when to refactor, or how to write
programs that need fewer refactorings in the first place. Refactoring is recognized as a major
obstacle in software development. Even new languages have been created, motivated in part by
a desire to eliminate some known sources of refactorings. Why is it becoming so difficult to be a
developer? The sheer abundance of this material is telling us that something is wrong.

Clearly, the program is what needs to remain unchanged. In this work, we create a description
of the program in terms of relations, called the relational model. The model defines precisely what
is meant by the term “behavior.” It provides a point of reference, a canonical representation of the
program, a container that preserves the structure and function of the program in a pristine state. It
contains no language-specific features, and no object-oriented features, and it stands unique on both
counts. It can be generated from existing code by a specialized parser. The model is, effectively, a
relational database. The model can be directly compiled or caused to run in an interpreter. The

v
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model effectively separates the linguistical features from the structure of the code.
Next, we identify those transformations that leave the program invariant. We call them in-

variant transformations. These, and no others, are the refactoring transformations. The set of
all invariant transformations solves a fundamental problem, because it defines the term “behavior-
preserving”. The ability to identify the invariant transformations is an essential feature of the
model. Yet, they are very easy to identify, and we think we know why.

Mathematics offers three tools for dealing with the complexity of information: the set, the
graph, and the relation. Every organized body of information is either a set, a graph, or a relation.
A computer program is a relation. The relational model describes the program mathematically
by means of a set of relations. In the book, we give a more rigorous definition of relation, but for
now, let us think of a relation as a database table. Each column of the table is a type or domain.
A type is a set, a collection of “things”, with a name. Any things, even objects or other types.
Each row is a value or tuple of the relation.

If one of the types is identified as a cotype or codomain, and the remaining types are the
arguments, then the relation maps the arguments over to the codomain. If the mapping is one-one
or many-one, the relation is a function. We use the term relational function to refer to this
definition in particular and differentiate it from other definitions used in programming.

The program is described by four sets of relations, each containing one or more relations. The
first set contains all the relational functions in the program, in no particular order. The second
set contains relations describing the execution sequences and flow of control statements, some of
them dependent on values found in the codomains. The third set contains the predecessor-successor
constraints for the sequences, and the last set, the actors that initiate the sequences.

Relations are not dynamic, like programs are. Execution of a program “creates” objects and
fills memory with data. Relations, instead, define types as sets of all possible values of that type.
The values do not have to be explicitly represented in memory, just defined. Thus, execution in the
relational model is equivalent to a search operation, where initial input data, intermediate values
and final results are successively found in the corresponding sets. Of course, the values found must
be explicitly represented, but conceptually, execution is still a search operation. The power of
relations stems from these two features: the complete freedom for defining the sets, and the closure
property or inclusion of all possible values in the sets.

For presentation purposes, we expand the relations to form a matrix, the rows of which corre-
spond to the relational functions, and the columns to all the variables or literals in the program,
with their fully-qualified names. Two more columns are added, one with the primary keys that
identify the rows, and the other with operator identifiers. The remaining elements of the matrix
identify the arguments, codomains, and mutators. The matrix is a sparse matrix, one where only a
few elements in each row are meaningful. Sparse matrices are used internally in databases to store
relations, but only a full representation is human-readable, and is what we use for all the examples.
The remaining components of the model, actors, sequences and constraints, are presented as tables.

The purpose of the matrix presentation of the model is to illustrate the refactoring transforma-
tions. The basic transformations consist of row and column permutations. There is really no need



Refactoring With Relations vii

to permute anything, because we keep separate descriptions of the permutations, but we do physi-
cally permute rows and columns in order to demonstrate the algorithm. Columns can be permuted
freely, but row permutations are legal only when they do not violate the predecessor-successor
constraints. Enforcement of the predecessor-successor constraints guarantees the preservation of
behavior.

A sparse matrix partitioning algorithm is used to create new user types. Partitioning is an NP-
complete problem, at least in some cases, which explains why it is so difficult to properly refactor
a program by hand. In the relational model, we effectively take the complexity away from the
development environment and let the machine deal with it. The algorithm has control parameters
and can be guided from business experience or UML models either directly or via menu selections.
To illustrate the algorithm visually, we select a subset of variables to be encapsulated, permute the
columns to cause the selected columns to be adjacent, and define them as a partition. This partition
is a new class with the selected variables as member attributes. We then propagate the partitions
to the rows, creating the constructors and member methods for the new class. The algorithm
demonstrates that very few type combinations are legal, because most violate the constraints, but
this can be determined beforehand and the menu selections can be based on that determination.
As new types are created, they are separated into new structures, also relational, that become
definitions of the new classes and the implementations of their methods. The new structures
become part of the relational model, the partitions in the matrix are replaced with their new types,
and the process continues recursively until there is nothing more left to encapsulate. The new
structures, in turn, may have to be partitioned into more new types.

The visual display of the matrix offers a striking demonstration of the workings of the algorithm,
the creation of new user types, and the pervasive nature of encapsulation. It also helps to visualize
why development frequently breaks the structure of a program and makes refactoring necessary.
Refactoring certainly appears very different in this new light.

There remains the issue of the source code and its quality. After encapsulation, the relational
model contains a description of the object-oriented features of the program. Generating the code
itself from the model is a matter of applying the semantical and syntactic rules of the language. For
now, this has to be done manually. We expect, however, that language modules will be developed
to automate this task. Our concept is that languages should subscribe to the relational model
by providing the specialized parser and the conversion module for that language. This will allow
conversion from the relational model to any subscribed language, as well as automatic translation of
code between languages. The fact that the resulting code is machine-generated defines the concept
of quality.

Several examples are presented in the book. One of them demonstrates the automatic conversion
of a 30-line C program into C++ code. Two different encapsulations are used to create two different
refactorings of the same program. The set of all possible refactorings corresponds to the set of all
possible legal partitionings of the sparse matrix. Structure-breaking development and the ability
of the algorithm to fix development errors are both illustrated by other examples.

The relational model can promote tool integration and improve connectivity between various
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tools used to manipulate a program during its lifetime, such as UML models. Some of the tools
use alternative models that interface only manually with the program. But the models describe
functional features of the program, the same features that are described by relations in the rela-
tional model. They are in fact the same relations. There must be a one-one correspondence and a
seamless integration.

The scope of our proposition turns out to be much wider than refactoring alone, even than com-
putation alone. Basically, anything that functions or does something is a relation and is amenable
to a similar model and similar processing. We learn in terms of relations, but we reason and
communicate in terms of objects. How do those relations become objects in our minds? Can a
relational model help to understand intelligence? Can it help to understand the process that goes
on in an analyst’s mind when he or she decides to define a new class? A relational model of genetic
information stored in DNA might one day shed light on the logic of DNA. How is the information
that tells a cell how to multiply or what to become actually stored? Will natural languages also
fall within reach of the relational model? These questions are fascinating, but we are not going to
say much more about them. For now, we concentrate on refactoring alone.

There is a great deal of work to be done, and we hope to encourage some research in the area. A
critical issue is algorithms for the recognition of object-oriented features in the partitioned matrix.
For example, we have covered user types and member methods, and some of polymorphism, but we
have no material yet on inheritance. Let’s stop trying to strengthen the refactoring tree by pulling
from its leaves. Let’s work on the roots for a change.

The basic concepts that support the Relational Model for computer programs are discussed in
Chapter 1. This chapter also includes a brief tutorial on relations. Chapter 2 introduces the model
by example, and presents an elementary discussion of the mechanics of the type encapsulation
algorithm used in the model. Chapter 3 introduces a sparse matrix representation of the relational
model, and demonstrates how the block-partitioning of the sparse matrix is equivalent to type
encapsulation and the creation of new user types and other object-oriented features. Several explicit
examples for the cases discussed in Chapter 2 are presented. The sparse matrix representation is a
means for visualizing the model and the relational transformations performed by the encapsulation
algorithm.

Chapter 4 discusses some of the experimental evidence that supports our concepts. Presented is
a case study on the refactoring of a 40,000 line C++ program. The definition of deep refactoring is
introduced, and the true nature and complexity of proper refactoring is discussed. A programming
style called Strong Ownership is introduced as a temporary solution for developers, until new
automated tools based on the relational model are developed.

Chapter 5 is an outlook to the future. We discuss the possible application of the relational model
to other areas of computer programming, such as development, reverse engineering, maintenance,
code reuse, and translation of code between languages. There is also an outlook to the future, with
applications far beyond the reach of computer programming.
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Who should read this book

This book is of interest to computer scientists and tool developers. Anyone working on meth-
ods for software development should read it. The theory described here is also of interest for
reverse-engineering and code reuse and maintenance. Analysts will find the material interesting
and suggestive, but not directly applicable to their work. There is only one section of direct interest
to developers, and that is the section on Strong Ownership. We recommend that every developer
should read this material and start using the SO programming style now. However, since it is not
worth buying the book just to read two pages, the section on SO has been included in the page
sample, which is available from our web site. There is no other material useful for developers,
unless they are very curious. Developers and analysts need to wait until new tools are developed.

Long-legged cow by Isabella Pissanetzky
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phatical view of the pervasive nature of encapsulation. Once a user type forms by permuting
columns and encapsulating a set of them as the new type, encapsulation propagates through
the entire matrix, forcing functions and other variables to be encapsulated as well. Which
in turn forces still other functions and other variables to also be encapsulated. Encapsula-
tion is a global feature of the program, definitely not a local feature. The global nature of
encapsulation is at the root of the need for refactoring code.

Using sparse matrices implies a higher level of abstraction. For readers who are not
familiar with the subject, we include a short tutorial. Readers are encouraged to read
section 3.1 carefully. It is also the most difficult to read but it is the one that contains the
important material. Sparse matrices offer the best possible view of the process, but are hard
to fit in a page, even for the simplest of examples, so readers are advised to make enlarged
paper copies of them.

We said that sparse matrices are effective for visualizing a small example, but they may
not be appropriate for dealing with the complex searches and relational operations involved
in the conversion. The container should be based on the relational model, which has the
required capabilities. This example intends to illustrate the following points:

• Show how a program can be expressed as a set of relations and is itself a relation.

• Demonstrate how relational operations can be used to convert code from the relational
model, or from a C program, directly into object-oriented code, such as C++.

• Show two different refactorings of the same C++ program obtained with different
sequences of relational operations.

• Present the automation of the classical refactoring Move Method [6].

• Point out some limitations of current refactoring methods.

• Discuss the use of the relational model as a container for the structure of code.

• Illustrate the malleability or capacity of the model for adaptive change under the
control of outside influences.

• Discuss the application of a sparse matrix to describe an entire program, using the
same format for object-oriented and non-object-oriented code.

• Illustrate how various object-oriented structures are recognized in the sparse matrix.

• Show that the sparse matrix can be compiled or caused to run in an interpreter.
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• Demonstrate that the block-partitioning of the sparse matrix is equivalent to encapsu-
lation and creation of new user types.

• Propose that programming languages, and even machine code, are different ways of
expressing the same relations.

• Propose that programming languages, traditionally used one-way for man-machine
communication, can also be used by programs to communicate with humans in a
dialogue.

• Propose that code models and object models such as UML are different views of the
same relational model.

• Propose that refactoring, reverse engineering, compilation and translation between
languages are all relational operations based on the relational model.

• Explain why development frequently breaks the structure of code and results in the
need for refactoring.

• Discuss some ideas that may lead to new methods for software development.

• Conjecture that learning is the process of acquiring relations, and that the conversion
of relations into objects is intelligent thinking.

• Propose that meaning comes from objects, not objects from meaning.

• Propose that the block-partitioning algorithm connects detail with meaning because
it creates meaningful objects from detailed relations.

1.2 Relation Basics

This work is for readers who understand software but may be less familiar with relations. For
them, and in this section, we cover the basics of relations. When possible, we use informal
database language such as table for relation, row or record for tuple, and column or field for
attribute, but we also use the formal terms on occasion.

Domain. In the theory of relations [3], a domain, or type, is a set with a name. A domain
is characterized by two features, the set and the name. This means that two domains are
different if their names are different, even if their sets are the same. A set is a collection of
“things” considered as a whole, but the things can be anything. They can be other domains,
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Relational Model Examples

2.1 The Simple Program Example

The first step is to enter the data and structure of the code. There is more than one way
of doing this, and we will briefly revisit the issue below, in section 5.1.1. For the sake of
this example, we start with a simple program written in C and parsed in such a way that
each line of code contains one single operation. The program describes one step in the time
simulation of the motion of the center of mass of a body, relative to a coordinate system x,
y, z and under the action of an applied force, as established by Newton’s second law, but
this is immaterial for our purposes. All variables and literals in the program are of the same
primitive type, say double, and there are no user types. Here is the program:

Program A
1. d = 0.2;

2. a = 0.1;
3. b = 0.5;
4. Rx = 1;
5. Ry = 2;
6. Rz = 3;
7. Vx = 4;
8. Vy = 5;
9. Vz = 6;
10. Fx = 7;
11. Fy = 8;
12. Fz = 9;

9
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13. ta = a * Fx;
14. tb = a * Fy;
15. tc = a * Fz;
16. td = d * Vx;
17. te = d * Vy;
18. tf = d * Vz;
19. tg = ta + td;
20. th = tb + te;
21. ti = tc + tf;
22. tj = b * Fx;
23. tk = b * Fy;
24. tl = b * Fz;
25. Rx = Rx + tg;
26. Ry = Ry + th;
27. Rz = Rz + ti;
28. Vx = Vx + tj;
29. Vy = Vy + tk;
30. Vz = Vz + tl;

All statements in program A are expressions. The program is very simple, of course, but a
suitable parser can convert any OO program into similar C code. This already illustrates
one of the ways for entering the code data into the model: by parsing existing OO code.
The existing code could be legacy code or new code under development, and it is obviously
not restricted to any particular language.

As explained in Section 1.2, a domain is a set with a name, and a function is a relation
that describes a one-to-one or many-to-one mapping from values in the argument domains
to a value in the result domain or codomain [3]. A domain is also known as a type, and
a codomain as a cotype, and we use all the terms interchangeably. For example, consider
expression 13 above, which describes a function with the arguments a and Fx and the cotype
ta. It can be described by a relation similar to (7) in Section 1.3. A program consists entirely
of relations. In fact, the entire program can be described by a single relation.

2.2 The Sequence of Execution

The sequence of execution describes the order that the executable statements in a program
must execute. Actors initiate a sequence of execution by interacting with the program, for
example via the mouse of keyboard. Flow of control statements can alter the sequences,



3.2. PARTITIONING P1 23

Matrix A3 can be converted directly into code in an object-oriented language such as
VB, C#, Java, C++ or Pascal. Part of the process of conversion is the recognition of iso-
structural blocks in the matrix, which act as patterns for refactoring. As we explained below,
block columns correspond to classes, and block rows to member methods in those classes. If
the program contains multiple instances of a class, then the same class structure will appear
repeatedly, and must be recognized to avoid duplications. In the particular case of matrix
A3, an examination immediately shows a class structure repeated three times, indicating
three objects of that class. In an automated version, the ability to compare class structures
must be part of the language module. For now, however, since language modules are not yet
available, the conversion has to be done manually. Here is the C++ code:

Program D
class G{

double d, a, b;
G(double d0, double a0, double b0){d = d0; a = a0; b = b0;}

};
class H{

double R, V, F;
H(double R0, double V0, double F0){R = R0; V = V0; F = F0;}
void M(const G & g){

double td = g.d * V;
double ta = g.a * F;
double tj = g.b * F;
double tg = ta + td;
R += tg;
V += tj;

}
};
void main(){

G g(0.2, 0.1, 0.5);
H x(1, 4, 7);
H y(2, 5, 8);
H z(3, 6, 9);
x.M(g);
Rx = x.R;
Vx = x.V;
y.M(g);
Ry = y.R;
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Vy = y.V;
z.M(g);
Rz = z.R;
Vz = z.V;

}

And here is the Pascal code [11] obtained directly from matrix A3:

Program D1
program D1;

type
G = class

d , a , b : double;
constructor Create( d0 , a0 , b0 : double );

end;
H = class

R , V , F : double;
constructor Create( R0 , V0 , F0 : double );
procedure M( aG : G );

end;
constructor G.Create( d0 , a0 , b0 : double );
begin

d := d0;
a := a0;
b := b0;

end;
constructor H.Create( R0 , V0 , F0 : double );
begin

R := R0;
V := V0;
F := F0;

end;
procedure H.M( aG : G );
var

td , ta , tj , tg : double;
begin

td := aG.d * V;
ta := aG.a * F;
tj := aG.b * F;
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At this point, method M can be defined by matrix M as follows:

OP d a b R V F t1 t2 t3 t4

1 * 1 2 C
2 * 1 2 C

M = 3 * 1 2 C
4 + 2 1 C
5 + m 1
6 + m 1

and method H, intentionally named after the domain because it will be the constructor of
class H, is defined by matrix H:

OP R V F R0 V0 F0

1 = C 1
H = 2 = C 1

3 = C 1

Using the new definitions, partitioned sparse matrix A4 is now obtained:

OP d a b .2 .1 .5 H1 1 4 7 H2 2 5 8 H3 3 6 9

1 = C 1
2 = C 1

A4 = 3 = C 1
4 H C 1 2 3
5 H C 1 2 3
6 H C 1 2 3
7 M 1 2 3 m4
8 M 1 2 3 m4
9 M 1 2 3 m4

where we have used m4 to indicate that the codomain is also argument 4 of the function.
Matrix A4 is equivalent to A3. Matrix A4 can be further processed. Define the new variable:

G = {d, a, b}
with its corresponding domain G, and the new internal domain:

G = {d0, a0, b0}
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O d a b . . . R V F t t t t 1 4 7 R V F t t t t 2 5 8 R V F t t t t 3 6 9
P 2 1 5 x x x d a j g y y y e b k h z z z f c l i

1 = C 1
2 = C 1
3 = C 1
4 = C 1
7 = C 1

10 = C 1
5 = C 1
8 = C 1

11 = C 1
6 = C 1
9 = C 1

12 = C 1
16 ∗ 1 2 C
13 ∗ 1 2 C
22 ∗ 1 2 C
19 + 2 1 C
25 + m 2
28 + m 2
17 ∗ 1 2 C
14 ∗ 1 2 C
23 ∗ 1 2 C
20 + 2 1 C
26 + m 2
29 + m 2
18 ∗ 1 2 C
15 ∗ 1 2
24 ∗ 1 2 C
21 + 2 1 C
27 + m 2
30 + m 2

Figure 3.4: Final partition. Matrix A3, the relational model for Program D.
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• If there are no preconditions, perform the refactoring.

• Repeat until all refactorings are complete.

The obvious observation is that the refactoring algorithm itself is iterative, or at least cas-
cading. One refactoring requires other refactorings, which in turn may require still more
refactorings.

Prior to the experiment, the code was thoroughly cleaned and debugged. Many light
refactorings were performed, where light refactoring was defined in section 3.2. Among
them, there was one where we protected all public attributes still remaining in the classes,
and installed public Get and Set methods where needed. Several of the Get methods were
used to supply objects to other classes that needed to call those objects’ Set methods. Since
the Set methods are non-const, the corresponding Get had to return non-const objects by
pointer or reference. Yet, these Get methods were declared with the const qualifier, because
they had to be invoked from const objects. Specifically, the following steps were performed
prior to the start of the experiment:

R1 Preparation of test cases.

R2 Cleaning and preliminary refactoring. All light refactorings with simple or no precon-
ditions were performed prior to the experiment. Public attributes were eliminated,
methods and classes were extracted or moved, hierarchies were rearranged. The initial
code looked clean and concise.

R3 Diagnosis. Three types of targets were determined: failure to containerize data struc-
tures, encapsulation violations, typically by public const Get methods returning a
reference to a non-const object, and casts. A few cases of each type were found, all
subject to heavy preconditions.

R4 Decomposition. For each major target, determine the preconditions that need to be
satisfied, recursively find the refactorings needed to satisfy each precondition, and
decompose each of the sub-refactorings in turn. This resulted in a multi-level tree of
refactorings, the refactoring tree, associated with each major target.

R5 Backtracking. The leaves of each tree are refactorings with no preconditions. These
were performed, and the leaves were removed, creating a new set of leaves. The pro-
cedure was repeated until the tree was empty. More rigorously, the tree was not
completely static. Some portions of it were affected by the refactorings, and had to be
updated.
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imposed by the underlying logical structure of the code. They tell us that our programming
happened at the leaf level of the tree, and must now rise to the root level. The role of SO is
to bring regular development closer to the root level.

The refactoring tree can also be viewed as a path for the iterative solution of a coupled
system with many equations and many unknowns. The equations are the logical constraints
expressed by the preconditions and the flow of control, and the unknowns are structural
features such as the composition of classes, the arguments of methods, or the inheritance
hierarchies. To solve the system of equations we must find a structure that satisfies all the
equations, but this is not an easy task. Possible approaches are:

A1 Manual refactoring. Solves the system in the hardest possible way: by direct substitu-
tion in place. This is the traditional approach.

A2 SO coding. The effect of SO is to decouple the system and make it simpler and easier
to solve by hand.

A3 Computerized refactoring. The first step to automate is to expose the equations and
unknowns hidden in the code, and make them explicit. The relational model discussed
in this book can do this.

We have postulated that the container where the structure of code is to be encapsulated
should be based on the relational model. As we have seen, these conclusions are justified in
theory in the development of the relational model. Relations can describe data, function,
code, relationships, flow of control, actors, scenarios, states, even architecture and relation-
ships between the various models.

4.6 Strong Ownership

SO is simply a characterization of well-known rules of object-orientation. The prescriptions
of SO follow below. They are not necessarily disjoint.

SO1 Ownership. Every object has one owner, and one only. The owner constructs the
object and destroys it when no longer needed, or prior to its own destruction. The
owner, and only the owner, has authority to modify the object after its construction.

SO2 User independence. A class is user-independent, it offers services to its users but makes
no assumptions about them.

SO3 Containerization. The structure of data must be encapsulated into the appropriate
container. Containers are non-intrusive and do not own their content.
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SO4 Casting. Down casts, away from the base class, are not allowed.

SO5 Object-orientation. The rules of encapsulation, inheritance and polymorphism are part
of SO.

A modification of SO1 is possible, where ownership of an object can be transferred to another
owner by a sale procedure. A modification to SO4 can be considered, where downcasts
would be allowed in containers. SO1 is parser-enforceable, and so is SO4. SO1 specifically
proscribes public const Get methods that return a pointer or reference to a non-const object.
We believe, but have not tested, that SO should include other features from the relational
model discussed below. Paramount among them is a ban on pointers, which are banned
from database relations [3].

SO creates a tree, the ownership tree, where the vertices are individual objects, not classes,
edges represent the ownership relationship, and the parent of an object is its owner. The
tree establishes a chain of command and channels for messages and data to travel, and thus
effectively encapsulates functionality. SO prevents memory leaks, forces misplaced methods
to their right places, and fixes detours. Concepts similar to SO have been described by [9].

Coding in SO style is more difficult that regular coding, but it is a great deal easier than
the equivalent regular coding followed by refactoring. It puts more load on the developer’s
shoulders, but it alleviates the total load for the development team.
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