
//——————————————————————–

void Vector3::SetComponents(c
onst Vector3 & other){

components[0] = other.components[0];

components[1] = other.components[1];

components[2] = other.components[2];

}

//SetComponents

//——————————————————————–

double Vector3::Angle(const Vector3 & q){

//Calculates the angle between this and q (radians, range 0 ¡= angle ¡= pi).

double cosa = DotVector(q);

double sina = (CrossVector(q)).G
etMyLength();

double alfa = atan2(sin
a, cosa); //range 0 to pi (because sina ¿= 0).

return alfa;

}

//Angle

//——————————————————————–

Vector3 Vector3::GenerateArbitraryNormal()const{

//Generate an arbitrary unit vector that is perpendicular to this vector in 3D space.

Vector3 mm;

if(fa
bs(components[0]) ¡= fabs(components[1]) && fabs(components[0]) ¡= fabs(components[2])){

mm.SetComponents(0
.0, components[2], -components[1]);

}
else if(fa

bs(components[1]) ¡= fabs(components[0]) && fabs(components[1]) ¡= fabs(components[2])){

mm.SetComponents(-c
omponents[2], 0.0, components[0]);

}
else{ mm.SetComponents(c

omponents[1], -components[0], 0.0);

}
mm.MakeMeUnit();

return mm;

}

//GenerateArbitraryNormal

//——————————————————————–

Vector3 Vector3::operator-(const Vector3 & uu)const{

return Vector3(components[0] - uu.components[0], components[1] - uu.components[1], components[2] - uu.components[2]);

}

//operator-

//——————————————————————–

void Vector3::MakeMeZero(){

components[0] = 0.0;

components[1] = 0.0;

components[2] = 0.0;

}

//MakeMeZero

//——————————————————————–

Vector3 Vector3::DoubleCrossVector(const Vector3 & uu)const{

//Calculate me X (me X uu).

double AC = components[0] * uu.components[0] + components[1] * uu.components[1] + components[2] * uu.components[2];

double AA = components[0] * components[0] + components[1] * components[1] + components[2] * components[2];

return ((*this) * AC - uu * AA);

}

//DoubleCrossVector

//——————————————————————–

Refactoring
With

Relations
A New Method

for Refactoring

Object-Oriented Software

Sergio Pissanetzky

Copyright c© 2006 by Sergio Pissanetzky and SciControls.com. All rights reserved. No
part of the contents of this book can be reproduced without the written permission of the
publisher.

Professionally typeset by LATEX. This work is in compliance with the mathematical typeset-
ting conventions established by the International Organization for Standardization (ISO).

Dr. Pissanetzky retired after a rewarding career as an Entrepreneur, Professor, Research Scientist
and Consultant. He was the founder of Magnus Software Corporation, where he focused on develop-
ment of specialized applications for the Magnetic Resonance Imaging (MRI) and the High Energy
Particle Accelerator industries. He has served as Member of the International Editorial Board of
the “International Journal for Computation in Electrical and Electronic Engineering”, as a Member
of the International Advisory Committee of the International Journal “Métodos Numéricos para
Cálculo y Diseño en Ingenieŕıa”, and as a member of the International Committee for Nuclear Res-
onance Spectroscopy, Tokyo, Japan. Dr. Pissanetzky has held professorships in Physics at Texas
A&M University and the Universities of Buenos Aires, Córdoba and Cuyo, Argentina. He has also
held positions as a Research Scientist with the Houston Advanced Research Center, as Chairman
of the Computer Center of the Atomic Energy Commission, San Carlos de Bariloche, Argentina,
and as a Scientific Consultant at Brookhaven National Laboratory. Dr. Pissanetzky holds several
US and European patents and is the author of three books and numerous peer reviewed techni-
cal papers. Dr. Pissanetzky earned his Ph.D. in Physics at the Balseiro Institute, University of
Cuyo, in 1965. Dr. Pissanetzky has 35 years of teaching experience and 30 years of programming
experience in languages such as Fortran, Basic, C and C++. Dr. Pissanetzky now lives in a quite
suburban neighborhood in Texas.

Website: http://www.SciControls.com

Disclosure
The material presented in this work is the subject of ongoing research. The ideas and algorithms,
though theoretically sound, have not been tested other than with the examples in the book. No
representation is made regarding their practical value.

Trademark Notices
Product and company names mentioned herein may be the trademarks of their respective owners.

ISBN 0-9762775-4-9

http://www.iso.org
http://www.SciControls.com

Refactoring With Relations iii

Refactoring With Relations

A New Method for Refactoring
Object-Oriented Sofware

First edition

Sergio Pissanetzky

July 2006

iv Sergio Pissanetzky

Preface

A cow’s legs are very long, they reach all the way to the ground.
Anonymous. My best attempt at explaining that programs, too, have a foundation.

This book is an introduction to the Relational Model of Computer Programs and one of its many
applications: the automatic polyglot refactoring of computer software. Refactoring is frequently
defined as a behavior-preserving source-to-source transformation of a computer program, performed
with the purpose of improving the quality of code. There are several problems with this definition.
We can “develop” a program, “compile” a program, “buy” or “sell” a program, “install” a program,
“execute” a program. Clearly, refactoring does not transform the program, only its source code.
The program is not the same as the code.

There are no precise definitions of “behavior” or “quality”. Without them, we don’t know
exactly what it is that we are trying to preserve, or to improve, and we can’t automate refactoring.

As a consequence, refactoring is still perceived as a mostly manual, last resort operation, danger-
ous, expensive and error-prone. The fear of change originates from insufficient control. Tools have
been slow to appear. The few existing tools are language-specific, cover only light refactorings, and
leave the critical determinations of quality and behavior to the user. Several are not dependable
because of the bugs they contain [17].

There is no generally accepted theory of refactoring. Some theories model the source code, not
the program, and try to preserve as much of the source code as possible. And there is a literature
explosion. Several books teach developers how to refactor or when to refactor, or how to write
programs that need fewer refactorings in the first place. Refactoring is recognized as a major
obstacle in software development. Even new languages have been created, motivated in part by
a desire to eliminate some known sources of refactorings. Why is it becoming so difficult to be a
developer? The sheer abundance of this material is telling us that something is wrong.

Clearly, the program is what needs to remain unchanged. In this work, we create a description
of the program in terms of relations, called the relational model. The model defines precisely what
is meant by the term “behavior.” It provides a point of reference, a canonical representation of the
program, a container that preserves the structure and function of the program in a pristine state. It
contains no language-specific features, and no object-oriented features, and it stands unique on both
counts. It can be generated from existing code by a specialized parser. The model is, effectively, a
relational database. The model can be directly compiled or caused to run in an interpreter. The

v

vi Sergio Pissanetzky

model effectively separates the linguistical features from the structure of the code.
Next, we identify those transformations that leave the program invariant. We call them in-

variant transformations. These, and no others, are the refactoring transformations. The set of
all invariant transformations solves a fundamental problem, because it defines the term “behavior-
preserving”. The ability to identify the invariant transformations is an essential feature of the
model. Yet, they are very easy to identify, and we think we know why.

Mathematics offers three tools for dealing with the complexity of information: the set, the
graph, and the relation. Every organized body of information is either a set, a graph, or a relation.
A computer program is a relation. The relational model describes the program mathematically
by means of a set of relations. In the book, we give a more rigorous definition of relation, but for
now, let us think of a relation as a database table. Each column of the table is a type or domain.
A type is a set, a collection of “things”, with a name. Any things, even objects or other types.
Each row is a value or tuple of the relation.

If one of the types is identified as a cotype or codomain, and the remaining types are the
arguments, then the relation maps the arguments over to the codomain. If the mapping is one-one
or many-one, the relation is a function. We use the term relational function to refer to this
definition in particular and differentiate it from other definitions used in programming.

The program is described by four sets of relations, each containing one or more relations. The
first set contains all the relational functions in the program, in no particular order. The second
set contains relations describing the execution sequences and flow of control statements, some of
them dependent on values found in the codomains. The third set contains the predecessor-successor
constraints for the sequences, and the last set, the actors that initiate the sequences.

Relations are not dynamic, like programs are. Execution of a program “creates” objects and
fills memory with data. Relations, instead, define types as sets of all possible values of that type.
The values do not have to be explicitly represented in memory, just defined. Thus, execution in the
relational model is equivalent to a search operation, where initial input data, intermediate values
and final results are successively found in the corresponding sets. Of course, the values found must
be explicitly represented, but conceptually, execution is still a search operation. The power of
relations stems from these two features: the complete freedom for defining the sets, and the closure
property or inclusion of all possible values in the sets.

For presentation purposes, we expand the relations to form a matrix, the rows of which corre-
spond to the relational functions, and the columns to all the variables or literals in the program,
with their fully-qualified names. Two more columns are added, one with the primary keys that
identify the rows, and the other with operator identifiers. The remaining elements of the matrix
identify the arguments, codomains, and mutators. The matrix is a sparse matrix, one where only a
few elements in each row are meaningful. Sparse matrices are used internally in databases to store
relations, but only a full representation is human-readable, and is what we use for all the examples.
The remaining components of the model, actors, sequences and constraints, are presented as tables.

The purpose of the matrix presentation of the model is to illustrate the refactoring transforma-
tions. The basic transformations consist of row and column permutations. There is really no need

Refactoring With Relations vii

to permute anything, because we keep separate descriptions of the permutations, but we do physi-
cally permute rows and columns in order to demonstrate the algorithm. Columns can be permuted
freely, but row permutations are legal only when they do not violate the predecessor-successor
constraints. Enforcement of the predecessor-successor constraints guarantees the preservation of
behavior.

A sparse matrix partitioning algorithm is used to create new user types. Partitioning is an NP-
complete problem, at least in some cases, which explains why it is so difficult to properly refactor
a program by hand. In the relational model, we effectively take the complexity away from the
development environment and let the machine deal with it. The algorithm has control parameters
and can be guided from business experience or UML models either directly or via menu selections.
To illustrate the algorithm visually, we select a subset of variables to be encapsulated, permute the
columns to cause the selected columns to be adjacent, and define them as a partition. This partition
is a new class with the selected variables as member attributes. We then propagate the partitions
to the rows, creating the constructors and member methods for the new class. The algorithm
demonstrates that very few type combinations are legal, because most violate the constraints, but
this can be determined beforehand and the menu selections can be based on that determination.
As new types are created, they are separated into new structures, also relational, that become
definitions of the new classes and the implementations of their methods. The new structures
become part of the relational model, the partitions in the matrix are replaced with their new types,
and the process continues recursively until there is nothing more left to encapsulate. The new
structures, in turn, may have to be partitioned into more new types.

The visual display of the matrix offers a striking demonstration of the workings of the algorithm,
the creation of new user types, and the pervasive nature of encapsulation. It also helps to visualize
why development frequently breaks the structure of a program and makes refactoring necessary.
Refactoring certainly appears very different in this new light.

There remains the issue of the source code and its quality. After encapsulation, the relational
model contains a description of the object-oriented features of the program. Generating the code
itself from the model is a matter of applying the semantical and syntactic rules of the language. For
now, this has to be done manually. We expect, however, that language modules will be developed
to automate this task. Our concept is that languages should subscribe to the relational model
by providing the specialized parser and the conversion module for that language. This will allow
conversion from the relational model to any subscribed language, as well as automatic translation of
code between languages. The fact that the resulting code is machine-generated defines the concept
of quality.

Several examples are presented in the book. One of them demonstrates the automatic conversion
of a 30-line C program into C++ code. Two different encapsulations are used to create two different
refactorings of the same program. The set of all possible refactorings corresponds to the set of all
possible legal partitionings of the sparse matrix. Structure-breaking development and the ability
of the algorithm to fix development errors are both illustrated by other examples.

The relational model can promote tool integration and improve connectivity between various

viii Sergio Pissanetzky

tools used to manipulate a program during its lifetime, such as UML models. Some of the tools
use alternative models that interface only manually with the program. But the models describe
functional features of the program, the same features that are described by relations in the rela-
tional model. They are in fact the same relations. There must be a one-one correspondence and a
seamless integration.

The scope of our proposition turns out to be much wider than refactoring alone, even than com-
putation alone. Basically, anything that functions or does something is a relation and is amenable
to a similar model and similar processing. We learn in terms of relations, but we reason and
communicate in terms of objects. How do those relations become objects in our minds? Can a
relational model help to understand intelligence? Can it help to understand the process that goes
on in an analyst’s mind when he or she decides to define a new class? A relational model of genetic
information stored in DNA might one day shed light on the logic of DNA. How is the information
that tells a cell how to multiply or what to become actually stored? Will natural languages also
fall within reach of the relational model? These questions are fascinating, but we are not going to
say much more about them. For now, we concentrate on refactoring alone.

There is a great deal of work to be done, and we hope to encourage some research in the area. A
critical issue is algorithms for the recognition of object-oriented features in the partitioned matrix.
For example, we have covered user types and member methods, and some of polymorphism, but we
have no material yet on inheritance. Let’s stop trying to strengthen the refactoring tree by pulling
from its leaves. Let’s work on the roots for a change.

The basic concepts that support the Relational Model for computer programs are discussed in
Chapter 1. This chapter also includes a brief tutorial on relations. Chapter 2 introduces the model
by example, and presents an elementary discussion of the mechanics of the type encapsulation
algorithm used in the model. Chapter 3 introduces a sparse matrix representation of the relational
model, and demonstrates how the block-partitioning of the sparse matrix is equivalent to type
encapsulation and the creation of new user types and other object-oriented features. Several explicit
examples for the cases discussed in Chapter 2 are presented. The sparse matrix representation is a
means for visualizing the model and the relational transformations performed by the encapsulation
algorithm.

Chapter 4 discusses some of the experimental evidence that supports our concepts. Presented is
a case study on the refactoring of a 40,000 line C++ program. The definition of deep refactoring is
introduced, and the true nature and complexity of proper refactoring is discussed. A programming
style called Strong Ownership is introduced as a temporary solution for developers, until new
automated tools based on the relational model are developed.

Chapter 5 is an outlook to the future. We discuss the possible application of the relational model
to other areas of computer programming, such as development, reverse engineering, maintenance,
code reuse, and translation of code between languages. There is also an outlook to the future, with
applications far beyond the reach of computer programming.

Refactoring With Relations ix

Who should read this book

This book is of interest to computer scientists and tool developers. Anyone working on meth-
ods for software development should read it. The theory described here is also of interest for
reverse-engineering and code reuse and maintenance. Analysts will find the material interesting
and suggestive, but not directly applicable to their work. There is only one section of direct interest
to developers, and that is the section on Strong Ownership. We recommend that every developer
should read this material and start using the SO programming style now. However, since it is not
worth buying the book just to read two pages, the section on SO has been included in the page
sample, which is available from our web site. There is no other material useful for developers,
unless they are very curious. Developers and analysts need to wait until new tools are developed.

Long-legged cow by Isabella Pissanetzky

x Sergio Pissanetzky

Contents

1 Description of the Relational Model 1

1.1 Motivation . 1

1.2 Relation Basics . 4

1.3 The Relational Model . 5

1.4 Execution in the Relational Model . 7

2 Relational Model Examples 9

2.1 The Simple Program Example . 9

2.2 The Sequence of Execution . 10

2.3 The Mechanics of Conversion . 12

3 Refactoring the Sparse Matrix 17

3.1 Sparse Matrices . 17

3.2 Partitioning P1 . 21

3.3 Further Processing of Matrix A3 . 26

3.4 Partitioning P2 . 28

3.5 Partitioning P3 . 30

3.6 Class elements . 33

3.7 Storage Schemes for the Relational Model 33

4 Deep Refactoring and Strong Ownership 43

4.1 The Nature of Refactoring . 44

4.2 The Experimental Study . 45

4.3 A Case Study in Deep Refactoring . 47

4.4 Detours and Method Misplacement . 49

4.5 Conclusions from the Experiments . 50

4.6 Strong Ownership . 52

xi

xii CONTENTS

5 Applications and Outlook 55
5.1 What is Next . 55

5.1.1 Relation-assisted Development . 56
5.1.2 Refactoring . 57
5.1.3 Translation . 58
5.1.4 Reverse Engineering . 58
5.1.5 Automatic Code Generators . 58
5.1.6 Legacy Code . 59
5.1.7 Other possible applications . 59

5.2 Concluding Remarks . 61

1.1. MOTIVATION 3

phatical view of the pervasive nature of encapsulation. Once a user type forms by permuting
columns and encapsulating a set of them as the new type, encapsulation propagates through
the entire matrix, forcing functions and other variables to be encapsulated as well. Which
in turn forces still other functions and other variables to also be encapsulated. Encapsula-
tion is a global feature of the program, definitely not a local feature. The global nature of
encapsulation is at the root of the need for refactoring code.

Using sparse matrices implies a higher level of abstraction. For readers who are not
familiar with the subject, we include a short tutorial. Readers are encouraged to read
section 3.1 carefully. It is also the most difficult to read but it is the one that contains the
important material. Sparse matrices offer the best possible view of the process, but are hard
to fit in a page, even for the simplest of examples, so readers are advised to make enlarged
paper copies of them.

We said that sparse matrices are effective for visualizing a small example, but they may
not be appropriate for dealing with the complex searches and relational operations involved
in the conversion. The container should be based on the relational model, which has the
required capabilities. This example intends to illustrate the following points:

• Show how a program can be expressed as a set of relations and is itself a relation.

• Demonstrate how relational operations can be used to convert code from the relational
model, or from a C program, directly into object-oriented code, such as C++.

• Show two different refactorings of the same C++ program obtained with different
sequences of relational operations.

• Present the automation of the classical refactoring Move Method [6].

• Point out some limitations of current refactoring methods.

• Discuss the use of the relational model as a container for the structure of code.

• Illustrate the malleability or capacity of the model for adaptive change under the
control of outside influences.

• Discuss the application of a sparse matrix to describe an entire program, using the
same format for object-oriented and non-object-oriented code.

• Illustrate how various object-oriented structures are recognized in the sparse matrix.

• Show that the sparse matrix can be compiled or caused to run in an interpreter.

4 CHAPTER 1. DESCRIPTION OF THE RELATIONAL MODEL

• Demonstrate that the block-partitioning of the sparse matrix is equivalent to encapsu-
lation and creation of new user types.

• Propose that programming languages, and even machine code, are different ways of
expressing the same relations.

• Propose that programming languages, traditionally used one-way for man-machine
communication, can also be used by programs to communicate with humans in a
dialogue.

• Propose that code models and object models such as UML are different views of the
same relational model.

• Propose that refactoring, reverse engineering, compilation and translation between
languages are all relational operations based on the relational model.

• Explain why development frequently breaks the structure of code and results in the
need for refactoring.

• Discuss some ideas that may lead to new methods for software development.

• Conjecture that learning is the process of acquiring relations, and that the conversion
of relations into objects is intelligent thinking.

• Propose that meaning comes from objects, not objects from meaning.

• Propose that the block-partitioning algorithm connects detail with meaning because
it creates meaningful objects from detailed relations.

1.2 Relation Basics

This work is for readers who understand software but may be less familiar with relations. For
them, and in this section, we cover the basics of relations. When possible, we use informal
database language such as table for relation, row or record for tuple, and column or field for
attribute, but we also use the formal terms on occasion.

Domain. In the theory of relations [3], a domain, or type, is a set with a name. A domain
is characterized by two features, the set and the name. This means that two domains are
different if their names are different, even if their sets are the same. A set is a collection of
“things” considered as a whole, but the things can be anything. They can be other domains,

Chapter 2

Relational Model Examples

2.1 The Simple Program Example

The first step is to enter the data and structure of the code. There is more than one way
of doing this, and we will briefly revisit the issue below, in section 5.1.1. For the sake of
this example, we start with a simple program written in C and parsed in such a way that
each line of code contains one single operation. The program describes one step in the time
simulation of the motion of the center of mass of a body, relative to a coordinate system x,
y, z and under the action of an applied force, as established by Newton’s second law, but
this is immaterial for our purposes. All variables and literals in the program are of the same
primitive type, say double, and there are no user types. Here is the program:

Program A
1. d = 0.2;

2. a = 0.1;
3. b = 0.5;
4. Rx = 1;
5. Ry = 2;
6. Rz = 3;
7. Vx = 4;
8. Vy = 5;
9. Vz = 6;
10. Fx = 7;
11. Fy = 8;
12. Fz = 9;

9

10 CHAPTER 2. RELATIONAL MODEL EXAMPLES

13. ta = a * Fx;
14. tb = a * Fy;
15. tc = a * Fz;
16. td = d * Vx;
17. te = d * Vy;
18. tf = d * Vz;
19. tg = ta + td;
20. th = tb + te;
21. ti = tc + tf;
22. tj = b * Fx;
23. tk = b * Fy;
24. tl = b * Fz;
25. Rx = Rx + tg;
26. Ry = Ry + th;
27. Rz = Rz + ti;
28. Vx = Vx + tj;
29. Vy = Vy + tk;
30. Vz = Vz + tl;

All statements in program A are expressions. The program is very simple, of course, but a
suitable parser can convert any OO program into similar C code. This already illustrates
one of the ways for entering the code data into the model: by parsing existing OO code.
The existing code could be legacy code or new code under development, and it is obviously
not restricted to any particular language.

As explained in Section 1.2, a domain is a set with a name, and a function is a relation
that describes a one-to-one or many-to-one mapping from values in the argument domains
to a value in the result domain or codomain [3]. A domain is also known as a type, and
a codomain as a cotype, and we use all the terms interchangeably. For example, consider
expression 13 above, which describes a function with the arguments a and Fx and the cotype
ta. It can be described by a relation similar to (7) in Section 1.3. A program consists entirely
of relations. In fact, the entire program can be described by a single relation.

2.2 The Sequence of Execution

The sequence of execution describes the order that the executable statements in a program
must execute. Actors initiate a sequence of execution by interacting with the program, for
example via the mouse of keyboard. Flow of control statements can alter the sequences,

3.2. PARTITIONING P1 23

Matrix A3 can be converted directly into code in an object-oriented language such as
VB, C#, Java, C++ or Pascal. Part of the process of conversion is the recognition of iso-
structural blocks in the matrix, which act as patterns for refactoring. As we explained below,
block columns correspond to classes, and block rows to member methods in those classes. If
the program contains multiple instances of a class, then the same class structure will appear
repeatedly, and must be recognized to avoid duplications. In the particular case of matrix
A3, an examination immediately shows a class structure repeated three times, indicating
three objects of that class. In an automated version, the ability to compare class structures
must be part of the language module. For now, however, since language modules are not yet
available, the conversion has to be done manually. Here is the C++ code:

Program D
class G{

double d, a, b;
G(double d0, double a0, double b0){d = d0; a = a0; b = b0;}

};
class H{

double R, V, F;
H(double R0, double V0, double F0){R = R0; V = V0; F = F0;}
void M(const G & g){

double td = g.d * V;
double ta = g.a * F;
double tj = g.b * F;
double tg = ta + td;
R += tg;
V += tj;

}
};
void main(){

G g(0.2, 0.1, 0.5);
H x(1, 4, 7);
H y(2, 5, 8);
H z(3, 6, 9);
x.M(g);
Rx = x.R;
Vx = x.V;
y.M(g);
Ry = y.R;

24 CHAPTER 3. REFACTORING THE SPARSE MATRIX

Vy = y.V;
z.M(g);
Rz = z.R;
Vz = z.V;

}

And here is the Pascal code [11] obtained directly from matrix A3:

Program D1
program D1;

type
G = class

d , a , b : double;
constructor Create(d0 , a0 , b0 : double);

end;
H = class

R , V , F : double;
constructor Create(R0 , V0 , F0 : double);
procedure M(aG : G);

end;
constructor G.Create(d0 , a0 , b0 : double);
begin

d := d0;
a := a0;
b := b0;

end;
constructor H.Create(R0 , V0 , F0 : double);
begin

R := R0;
V := V0;
F := F0;

end;
procedure H.M(aG : G);
var

td , ta , tj , tg : double;
begin

td := aG.d * V;
ta := aG.a * F;
tj := aG.b * F;

3.3. FURTHER PROCESSING OF MATRIX A3 27

At this point, method M can be defined by matrix M as follows:

OP d a b R V F t1 t2 t3 t4

1 * 1 2 C
2 * 1 2 C

M = 3 * 1 2 C
4 + 2 1 C
5 + m 1
6 + m 1

and method H, intentionally named after the domain because it will be the constructor of
class H, is defined by matrix H:

OP R V F R0 V0 F0

1 = C 1
H = 2 = C 1

3 = C 1

Using the new definitions, partitioned sparse matrix A4 is now obtained:

OP d a b .2 .1 .5 H1 1 4 7 H2 2 5 8 H3 3 6 9

1 = C 1
2 = C 1

A4 = 3 = C 1
4 H C 1 2 3
5 H C 1 2 3
6 H C 1 2 3
7 M 1 2 3 m4
8 M 1 2 3 m4
9 M 1 2 3 m4

where we have used m4 to indicate that the codomain is also argument 4 of the function.
Matrix A4 is equivalent to A3. Matrix A4 can be further processed. Define the new variable:

G = {d, a, b}
with its corresponding domain G, and the new internal domain:

G = {d0, a0, b0}

40 CHAPTER 3. REFACTORING THE SPARSE MATRIX

O d a b . . . R V F t t t t 1 4 7 R V F t t t t 2 5 8 R V F t t t t 3 6 9
P 2 1 5 x x x d a j g y y y e b k h z z z f c l i

1 = C 1
2 = C 1
3 = C 1
4 = C 1
7 = C 1

10 = C 1
5 = C 1
8 = C 1

11 = C 1
6 = C 1
9 = C 1

12 = C 1
16 ∗ 1 2 C
13 ∗ 1 2 C
22 ∗ 1 2 C
19 + 2 1 C
25 + m 2
28 + m 2
17 ∗ 1 2 C
14 ∗ 1 2 C
23 ∗ 1 2 C
20 + 2 1 C
26 + m 2
29 + m 2
18 ∗ 1 2 C
15 ∗ 1 2
24 ∗ 1 2 C
21 + 2 1 C
27 + m 2
30 + m 2

Figure 3.4: Final partition. Matrix A3, the relational model for Program D.

46 CHAPTER 4. DEEP REFACTORING AND STRONG OWNERSHIP

• If there are no preconditions, perform the refactoring.

• Repeat until all refactorings are complete.

The obvious observation is that the refactoring algorithm itself is iterative, or at least cas-
cading. One refactoring requires other refactorings, which in turn may require still more
refactorings.

Prior to the experiment, the code was thoroughly cleaned and debugged. Many light
refactorings were performed, where light refactoring was defined in section 3.2. Among
them, there was one where we protected all public attributes still remaining in the classes,
and installed public Get and Set methods where needed. Several of the Get methods were
used to supply objects to other classes that needed to call those objects’ Set methods. Since
the Set methods are non-const, the corresponding Get had to return non-const objects by
pointer or reference. Yet, these Get methods were declared with the const qualifier, because
they had to be invoked from const objects. Specifically, the following steps were performed
prior to the start of the experiment:

R1 Preparation of test cases.

R2 Cleaning and preliminary refactoring. All light refactorings with simple or no precon-
ditions were performed prior to the experiment. Public attributes were eliminated,
methods and classes were extracted or moved, hierarchies were rearranged. The initial
code looked clean and concise.

R3 Diagnosis. Three types of targets were determined: failure to containerize data struc-
tures, encapsulation violations, typically by public const Get methods returning a
reference to a non-const object, and casts. A few cases of each type were found, all
subject to heavy preconditions.

R4 Decomposition. For each major target, determine the preconditions that need to be
satisfied, recursively find the refactorings needed to satisfy each precondition, and
decompose each of the sub-refactorings in turn. This resulted in a multi-level tree of
refactorings, the refactoring tree, associated with each major target.

R5 Backtracking. The leaves of each tree are refactorings with no preconditions. These
were performed, and the leaves were removed, creating a new set of leaves. The pro-
cedure was repeated until the tree was empty. More rigorously, the tree was not
completely static. Some portions of it were affected by the refactorings, and had to be
updated.

52 CHAPTER 4. DEEP REFACTORING AND STRONG OWNERSHIP

imposed by the underlying logical structure of the code. They tell us that our programming
happened at the leaf level of the tree, and must now rise to the root level. The role of SO is
to bring regular development closer to the root level.

The refactoring tree can also be viewed as a path for the iterative solution of a coupled
system with many equations and many unknowns. The equations are the logical constraints
expressed by the preconditions and the flow of control, and the unknowns are structural
features such as the composition of classes, the arguments of methods, or the inheritance
hierarchies. To solve the system of equations we must find a structure that satisfies all the
equations, but this is not an easy task. Possible approaches are:

A1 Manual refactoring. Solves the system in the hardest possible way: by direct substitu-
tion in place. This is the traditional approach.

A2 SO coding. The effect of SO is to decouple the system and make it simpler and easier
to solve by hand.

A3 Computerized refactoring. The first step to automate is to expose the equations and
unknowns hidden in the code, and make them explicit. The relational model discussed
in this book can do this.

We have postulated that the container where the structure of code is to be encapsulated
should be based on the relational model. As we have seen, these conclusions are justified in
theory in the development of the relational model. Relations can describe data, function,
code, relationships, flow of control, actors, scenarios, states, even architecture and relation-
ships between the various models.

4.6 Strong Ownership

SO is simply a characterization of well-known rules of object-orientation. The prescriptions
of SO follow below. They are not necessarily disjoint.

SO1 Ownership. Every object has one owner, and one only. The owner constructs the
object and destroys it when no longer needed, or prior to its own destruction. The
owner, and only the owner, has authority to modify the object after its construction.

SO2 User independence. A class is user-independent, it offers services to its users but makes
no assumptions about them.

SO3 Containerization. The structure of data must be encapsulated into the appropriate
container. Containers are non-intrusive and do not own their content.

4.6. STRONG OWNERSHIP 53

SO4 Casting. Down casts, away from the base class, are not allowed.

SO5 Object-orientation. The rules of encapsulation, inheritance and polymorphism are part
of SO.

A modification of SO1 is possible, where ownership of an object can be transferred to another
owner by a sale procedure. A modification to SO4 can be considered, where downcasts
would be allowed in containers. SO1 is parser-enforceable, and so is SO4. SO1 specifically
proscribes public const Get methods that return a pointer or reference to a non-const object.
We believe, but have not tested, that SO should include other features from the relational
model discussed below. Paramount among them is a ban on pointers, which are banned
from database relations [3].

SO creates a tree, the ownership tree, where the vertices are individual objects, not classes,
edges represent the ownership relationship, and the parent of an object is its owner. The
tree establishes a chain of command and channels for messages and data to travel, and thus
effectively encapsulates functionality. SO prevents memory leaks, forces misplaced methods
to their right places, and fixes detours. Concepts similar to SO have been described by [9].

Coding in SO style is more difficult that regular coding, but it is a great deal easier than
the equivalent regular coding followed by refactoring. It puts more load on the developer’s
shoulders, but it alleviates the total load for the development team.

Bibliography

[1] A. Chang. Application of sparse matrix methods in electric power system analysis.
Proc. Symposium on Sparse Matrices and their Applications. Yorktown Heights, NY,
pages 113–122, 1969.

[2] A. R. Curtis and J. K. Reid. The solution of large sparse unsymmetric systems of linear
equations. J. Inst. Math. Appl., 8:344–353, 1971.

[3] C. J. Date and H. Darwen. Databases, Types, and the Relational Model. The Third
Manifesto. Addison-Wesley, Reading, Massachusetts, third edition, 2006.

[4] A. L. Dulmage and N. S. Mendelsohn. A structure theory of bipartite graphs of finite
exterior dimension. Trans. Roy. Soc. Canada, 53:1–13, 1959.

[5] A. L. Dulmage and N. S. Mendelsohn. Graphs and Matrices, in Graph Theory and
Theoretical Physics. Academic Press, New York, 1967.

[6] Martin Fowler. Improving the Design of Existing Code. Addison-Wesley Professional,
Boston, Massachusetts, 1999.

[7] F. G. Gustavson. Some basic techniques for solving sparse systems of linear equations.
Sparse Matrices and their Applications. Proc. Symp. at IBM Research Center, New
York., pages 41–52, 1972.

[8] Joshua Kerievsky. Refactoring to Patterns. Addison Wesley Professional - Signature
Series, August 2004.

[9] Bartosz Milewski. C++ In Action: Industrial Strength Programming Techniques.
Addison-Wesley, 2001.

[10] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University
of Illinois at Urbana-Champaign, Department of Computer Science, 1992.

63

64 BIBLIOGRAPHY

[11] Pablo I. Pissanetzky. Pascal program. Private communication, 2006.

[12] Sergio Pissanetzky. Sparse Matrix Technology. Academic Press, London, 1984.

[13] Sergio Pissanetzky. Sparse Matrix Technology - Russian translation. Mir, Moscow, 1988.

[14] Sergio Pissanetzky. Vectors, Matrices, and C++ Code. SciControls.com, Texas, USA,
October 2004.

[15] Sergio Pissanetzky. Rigid Body Kinematics and C++ Code. SciControls.com, Texas,
USA, July 2005.

[16] Stefan Roock and Martin Lippert. Refactoring in Large Software Projects: Performing
Complex Restructurings Successfully. John Wiley & Sons, June 2006.

[17] Mathieu Verbaere, Ran Ettinger, and Oege de Moor. Jungl: a scripting language for
refactoring. Proc 28th International Conference on Software Engineering. Shanghai,
China, pages 172–181, 2006.

[18] William C. Wake. Refactoring Workbook. Addison-Wesley Professional, August 2003.

Index

Actor, 10
Actors

table of, 6
Applications, 59
Argument, 5
Arguments, vi
Automatic code generator, 58
Automation

of Move Mehtod refactoring, 3

Behavior
defined, v
preservation, vii

Bipartite graph, 34
invariance under permutations, 34
maximum assignment, 35

Block-partitioning
of a sparse matrix, 2, 17
of matrix A0, 21

Block column, 32
as an encapsulated user type, 20

Block row, 32
as a constructor, 20
as a member method, 20

Browsers, 59
Business rules

entering to relational model, 55
Butterfly effect, 48, 50

Calculations
table of, 6

Canonical representation
of a program, 6

Class
defining, 14
identifying, 22

Class element, 33
Code

as a model of the program, 51
good or bad, 45
legacy, 59

Code generation
automatic, 58

Code structure
separating from language, 2

Codomain, vi, 5
Complexity, 48
Concluding remarks, 61
Conslusions

from the experiment, 50
Constraints

predecessor-successor, vi, 2
table of, 6

Constructor
identifying, 22

Container
render as sparse matrix, 2

Control
flow, 19

Conversion
C to C++, 2

65

66 INDEX

mechanics, 1, 12
non-OO to OO, 2
to OO code, 2, 3

Cotype, vi, 5

Database table, vi
Data entry

at the OO side, 6
Declarative programming, 6
Deep refactoring, 26, 47
Defining

a class, 14
a method, 15
an object, 14

Definition
of behavior-preserving, 35
of deep refactoring, 49
of refactoring, 35

Detorus, 49
Development

automating invariant steps, 56
breaking the structure, 25, 30
breaks the structure, vii
fixing errors, vii
fixing errors automatically, 30
iterative nature, 44
new ideas, 4
relation-assisted, 56
teaching the program new skills, 56

Dialog
with program, 4

DNA, viii
Domain, vi, 4

of objects, 4

Element
class, 33

Elementary class, 7

Encapsulation
algorithm control parameters, 32
and block-partitioning, 4
and user types, 11
details of the algorithm, 21
example of problems, 48
global nature, 3
of user types, 3
pervasive nature, vii
promoting, 11
propagation, 3
recursive, 2
seeding the algorithm, 13, 20
selecting candidates, 12

Engineering
reverse, 58

Execution
as a search operation, vi, 7
in the relational model, 7
of a program, 7
sequences, 10, 19

Execution sequence, vi, 2
Experimental conclusions, 50
Experimental studies

recommendations, 55
Experimental study, 45

Flow of control, 19
Function

defined, 5
relational, vi

Further processing
of matrix A3, 26

Graph, vi, 1
bipartite, 34

html, 59

INDEX 67

Identifying
a class, 22
a constructor, 22
a method, 22
a temporary, 22

Incremental refactoring, 57
Inheritance, 60
Intelligence

as a conversion, 4
as recursive encapsulation, 60
understanding, viii

Invariant transformation, vi
Iso-structural blocks, 23
Iso-structural subgraphs, 12

Language
expressing relations, 1
natural, viii
subscribing, vii

Language module, 23
Learning

as relations, 4
Leaves

removing from refactoring tree, 46
Legacy code, 59

converting to a relational model, 59
extracting components, 59

Light refactoring, 26
Literature explosion, v

Malleability
of relational model, 3

Matrices
sparse, 17

Matrix
A0, 18, 37
A1, 21, 38
A2, 21, 39

A3, 22, 40
A3, further processing, 26
A4, 27
A5, 28
B, 28, 41
C, 42
H, defining a member method, 27
M, defining a member method, 27
sparse, vi

Meaning
adding to relations, 5
from objects, 4

Mechanics of conversion, 12
Messages, 49
Method

defining, 15
identifying, 22

Method misplacement, 49
Minor refactoring, 26
Mistakes

cascade of, 48
Motivation, 1
Move Method refactoring

automation, 3
Mutator, 7

Newton’s law, 9

Object
defining, 14

Operations
defining new, 13

Operator
algebraic, 7
logical, 7
overloaded, 7

Other applications, 59
Overloading, 60

68 INDEX

Overriding, 60

Parsers
business-specific, 55
natural language, 55

Partitioning
and encapsulation, 4
of a sparse matrix, vii
P1, 21
P2, 28
P3, 30

Partitions
as user types, 3

Pascal
conversion to, 24, 25

Pattern-matching tests, 12
Patterns, 58

relational, 59
Polymorphism, 7, 60
Pool of languages, 58
Preconditions

example of analysis, 47
for refactoring, 47

Predecessor-successor
constraints, 2

Predecessor-successor constraints, vi, 11
Primary key, 5
Program

A, 9
A, developed, 56
as a relation, vi, 1, 10
as a set of relations, 6
B, 14
C, 15
canonical representation, v, 6, 56
container, v, 1
D, 23
D1, 24

data describing, 2
data processed, 2
decomposition with a parser, 6
description, v
different refactorings, 29
E, 28
expressed as relations, 3
F, 30
G, 33
mathematical foundation, 20
mathematically described, vi
removing OO information, 32
simple example, 9
structure, v
translation between languages, 58

Programming
declarative, 56
object-oriented, 56
receiving feedback from the program, 57

Programming language
relational pool, 58
subscribing to relational model, 58
using for machine-man communication, 57

Program model, 1
Program structure

separating from language, 2
Propagation

of encapsulation, 3

Quality of code
defined, vii

Research outlook, 55
Refactoring

as a relational operation, 4
Refactoring, 44, 57

a dangerous procedure, 44
as a coupled system of logical equations,

52

INDEX 69

as a nested operation, 51
Backtracking, 46
code under development, 12
complexity, 50
computerized, 52
current limitations, v, 30
current state, 44
decomposition, 46
deep, 26, 47, 49
definition, v, 35
deterministic logic, 50
diagnosis, 46
example of decomposition, 48
Get and Set methods, 46
incremental, 57
iterative nature, 46
light, 26
logical constraints, 52
manual, 45
minor, 26
Move Method, 30
nature, 44
nested, 48
of recently developed code, 56
patterns, 23
preconditions, 45, 47
rebuilding damaged code, 57
size of beast, 49
targeting casts, 46
targets, 46
theories, v
tools, v
tree, 46

Refactoring algorithm
control parameters, 29

Refactoring logic, 30
Registers

as relations, 58

Relation, vi, 1, 2
as a table, 5
basics, 4
closure property, vi
definition, 5
degree, 5
sparse format, vi

Relation-assisted development, 56
Relational function, 5
Relational model, v, 5

as a container, 3
as support for developers, 57
creating, 7
creating from executable code, 58
creating from legacy code, 59
definition, 6
eagle’s eye view, 19
entering information, 1
execution, 7
features, 55
for areas of human activity, 55
for systems other than software, 60
in a development environment, 57
of DNA, 59
populating, 6, 9
populating from OO code, 10
recognizing OO structures, 3
storage schemes, 33
with a wider scope, 59

Relational model interfaces
language modules, 55
parsers, 55

Relational operations, 3
in refactoring, 4

Relational patterns, 59
Relational sources

developers, 59
natural language, 60

70 INDEX

programs, 59
textbooks, 59
UML models, 59

Relation Basics, 4
Realtion

normalization, 5
Relations

visualizing, 17
working with, 5

Relational model
for architecture, 60

Research
encouragement, viii

Reverse engineering, 58

Sequence
of execution, vi, 2

Sequences
of execution, 19
table of, 6

Sequences of execution, 10
Set, vi, 1
Simple program, 2
Simple program example, 9
Software development, 56
Source code

C to C++ conversion, vii
generating from model, vii
quality, vii
reconstruction, 32

Sparse matrices, 17
uses, 17
using in databases, 34

Sparse matrix, vi
Block-partitioning, 17
classes show vertically, 20
compiling, 3
converting into OO code, 20, 23

converting to OO code, 56
definition, 17
executing, 4
methods show horizontally, 20
partitioning, vii
row-wise representation, 33
tutorial, 3
un-partitioning, 32
used to describe a program, 3

Statement
conditional, 7
executable, 6, 10
flow of control, 7, 10
iterative, 7

Storage schemes
for the relational model, 33

Strong ownership, 52

Table
of actors, 6
of calculations, 6
of constraints, 6
of sequences, 6

Temporaries
identifying, 22

Tool integration, 1, 57
promoting, vii

Tools
semi-automatic, 45

Transformation
behavior-preserving, vi
invariant, vi

Translation, 58
automatic, vii
between languages, 58

Tree
of refactorings, 46

Type, vi, 4

INDEX 71

Type condensation, 13

UML, vii, 4
conversion into OO code, 56
models, viii

UML models, 19
User type

as a coupled logical system, 25
User types

as partitions, 2
creating, vii, 20
generating, 2
mechanics of creation, 12
predefined, 12
recursively creating, 26

Value, 5

Web sites, 59
What is next, 55

