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Preface

Highlights

What makes this book more attractive than others?

• The fact that this work is a textbook containing an in-depth presentation of the principles of
Rigid Body Kinematics.

• The fact that this work is a software release with fully documented source code.
• The fact that the logical objects in the theory are implemented as logical objects in the code.
• The use of a mathematical graph to organize multiple coordinate systems (2.3) and their cor-

responding kinematic states (3.2).
• The introduction of kinematic state operations such as addition, subtraction and inversion (4.2).
• The concept of propagation of mechanical information in the graph (4.1).
• The concept of specific coordinates and the role they play as a mediator between state variables

and generalized coordinates (3.6).
• The handling of the quadratic velocity vector (3.8).
• The direct links from methods and equations in the theory to the code where they are imple-

mented.
• The direct links from code documentation to the theory that supports the code.
• The fact that this work suggests a new standard for the use of logical objects in teaching Science.

Introductory Remarks

This work is a textbook containing an in-depth presentation of the principles of Rigid Body Kine-
matics at an advanced College level. This work is also a software release with fully documented
object-oriented source code and logical objects that correspond to those in the theory and imple-
ment them. The work provides a novel approach where theoretical Classical Mechanics is integrated
with the actual code that supports the computation and brings the logical objects to life.

The theory is covered in Part I, which consists of 5 chapters. The first two chapters introduce
the required mathematical tools. Chapter 1 covers matrices and matrix properties and opera-

xi
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tions specific to rigid body kinematics, such as symmetric positive-definite matrices, orthogonal
matrices, the orientation matrix, and skew-symmetric matrices and their relation to vectors and
cross-products. Chapter 2 discusses the use of graphs for organizing the many coordinate systems
used in mechanical problems involving multi-body systems. Subjects covered include graph theory,
coordinate transformations, the interpolation of orientations, and the definitions of the Coordinate
System graph and the Bodies and Constraints graph.

The concept of kinematic state and the definitions of the state variables position, orientation,
velocity, and angular velocity, are introduced in Chapter 3. The discussion includes topics such as
the definition of angular velocity by differentiation of the orientation matrix, and the definition of
the specific coordinates as an intermediary agent between the state variables and the generalized
coordinates. Mathematical expressions that relate the specific coordinates with the state variables,
the equations of motion, and the constraint equations, and the quadratic velocity vector, are
discussed in detail.

Chapter 4 introduces the rigid body model and its extension to multi-body systems. The operations
of addition, direct and transposed subtraction, and inversion of kinematic states are introduced.
The final chapter on theory, Chapter 5, introduces various systems of orientational specific coordi-
nates used in kinematics. Covered are Euler angles, including conventions and singularities, Euler
parameters, and an axial rotator system. The presentation includes the mathematical relations
between the state variables and the specific coordinates of each particular system.

Part I, the theory, contains many direct links from final equations or mathematical methods to
the code where those equations and methods have been implemented. Since the presence of the
links may become a hindrance for a reader who is focused on learning the theory but has no plans
to refer to the code just yet, we have used minimally intrusive, easy to ignore links that look like
C++, and if clicked will take the reader directly to the relevant part. These are a smart links,
they know where to go, they are unimposing, and they allow the reader to easily expand into code
when the need arises. The reader must be aware that there may be more than one implementation
of a mathematical equation or method, such as overloaded versions, versions that use different
arguments, overriden methods in derived classes, “Get” or “Set” methods, etc. The smart links
point to the general area where the implementations are, or, in the case of derived classes, they
point to the base class. Some of the links may point to classes described in previous volumes of
this series.

Part II of the book consists of 4 chapters and covers the documentation for the C++ foundational
implementation of rigid body kinematics. The logical objects defined by the classes implement all
the major equations and methods discussed in the theory. There are a total of 28 classes, including
classes for specific coordinates, graphs, and mechanics. The foundational implementation is general
and extensible. It provides support for all major features and allows extensions such as derived
classes with new functionality to be added as necessary. The code is optimized for efficiency, but



xiii

not at the expense of generality. Production implementations derived from the foundational code
will typically optimize the code for the features they need, at the expense of generality.

Part II, code documentation, contains numerous links to supporting theory, equations and defini-
tions. Code documentation relies very heavily on the theory and contains a very large number of
references. If all those references were colored or underlined, they would be too distracting. For
this reason, silent links have been used in Part II. These links are undistinguishable from regular
text, and therefore cause no distraction. They can be identified only by hovering the cursor over
the text of interest. There are so many silent links, that chances are the link will be there when
needed. Some of the silent links point to classes described in previous volumes of this series.

C++ names used in text are always clearly marked to distinguish them from ordinary words. For
example, Body designates a C++ class that represents a body. The word “body” is used in the
ordinary sense, while Body designates a class or an object of that class.

There is no representation here that C++ is the language of choice for object-oriented programming.
The main reason that C++ was chosen for this work is that the author is an experienced C++
programmer. Other good object-oriented languages exist, but were not considered. C++, of course,
is a powerful programming language and it does offer all the features needed to write a powerful
foundational package. The designers of C++ have made an exceptionally good job, and very few
mistakes. One of them was upholding the C convention for 0-based arrays. Constructs such as
arrays, vectors, matrices and tensors have been used for centuries and the practice of using 1-
based indices is well established. Countless generations of students have been educated in that
understanding. The makers of C++ have ignored the practice, making C++ look somewhat like
a machine-oriented language, not a high-level user-oriented language. Java has followed suit. The
consequences will haunt us for years to come.

Another popular and powerful object-oriented language is Java. It would be easy to translate our
C++ code into Java. The main difficulty for automating the conversion of C++ code to Java
is that C++ programmers frequently use non-object-oriented features such as global variables or
system functions. The code presented here does not, and should be easy to convert. We do not
have plans to do the conversion, however.

Object Logic is a method for modeling reality, for abstracting the complexities of the real world
into simpler, more manageable entities, the Logical Objects. Thought, then, proceeds in terms of
the logical objects. Humans think in terms of objects. Animals do too. They associate properties
and behavior. Birds are not afraid of passing traffic, but if a person came along on the highway,
the birds would fly away. They know that a passing “car” will not “harm” them. They can tell
the car from the person by their properties, and they associate the behavior because they know
the object.

Object methodology helps to organize objects - and thoughts. When used systematically and with
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wisdom, it can help objects and thoughts to fall into their right places, even reconcile differences
between seeming incompatibilities and offer a direction for thinking. One may envisage to apply
these concepts to areas of human knowledge other than science, perhaps a legal system, a govern-
ment system, an organizational chart, a company. The results may teach us a few things. It will
all happen, but the task isn’t easy.

The laws of Physics are already written in terms of logical objects, although this fact is not con-
sistently acknowledged in the literature. The fact may be attributable more to the creativity and
intellectual ability of the authors than to the systematic use of object methodology. The situation
is somewhat similar to what happened with tensors: the laws of Physics were written in terms
of tensors even before the concept of tensor was introduced. The introduction of tensors did not
add to the science, but it helped to organize it. And, indirectly, also to teach it. Similarly, object
methodology will not add to the science, but it will help again to organize it and to teach it.

The use of logic objects in science would also simplify the ever more important interface between
science and computation. It would become possible to create permanent, multi-use computational
objects of general application. The current trend, unfortunately, is to create objects specific to
each application, and such objects are seldom capable of communicating with each other.

The impact of object methodologies in Computer Science has been impressive. As computers and
software engineers alike became more powerful, programs became more and more compliant with
object logic. Just think of the Windows operating system and how it has evolved in the last decade,
from Windows 3.1 to Windows XP. Now, an icon, a file, the desktop, a network connection, just
about anything, is a logical object with properties and behavior. The subject is too vast even to
comment on it. Mathematicians and computer scientists have turned object methodologies into a
science. It is time to start applying this science.

Instructions

The Rigid Body Kinematics software that accompanies this eBook is free. It consists of 45 C++
files (extensions .cpp, .h). If you have purchased this product in the form of a compressed file
(extension .zip), the eBook itself and the source code files are all in the compressed file. If you
have purchased the eBook alone (extension .pdf), then you will need to download the file Rigid-
BodyKinematicsCode.zip, which contains all the C++ files.

In either case, you will also need to download the file VectorMatrix.zip, which contains 29 C++
files corresponding to the first volume of this series, “Vectors, Matrices, and C++ Code.” The
download is free as well.

You can use WinZip to unpack the compressed files. Copy the eBook and the C++ files to the
directory or directories of your choice.

http://www.SciControls.com/eBooks/RigidBodyKinematicsCode.zip
http://www.SciControls.com/eBooks/RigidBodyKinematicsCode.zip
http://www.SciControls.com/eBooks/VectorMatrix.zip
http://www.winzip.com/
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The Internet page on frequently asked questions contains the latest information about this eBook
and the corresponding code, including problems encountered after release. This page is a valuable
resource, and it is maintained and updated as needed.

The method ASSERT has been extensively used in code. This method works only with the Microsoft
Visual Studio C++ compiler, and only when compiling a debug version. ASSERT evaluates a logical
condition and stops execution at that line of code if the condition is false, or does nothing if it is
true. When compiling a release version, the compiler ignores all ASSERT . You can leave all ASSERT
if you are using the Microsoft compiler for debugging code, or you can edit them out if you are
using a different compiler or are not interested in debugging.

This eBook is Volume 2 of this series, and contains links to Volume 1 “Vectors, Matrices and C++
Code.” Many of these links point to a course on C++ contained in “Vectors, Matrices and C++
Code.” The course contains many C++ concepts and definitions, very useful for readers who are
not entirely familiar with C++. In order to make these links operational, please locate the pdf file
for “Vectors, Matrices and C++ Code,” copy it to the same directory where this eBook is stored,
and rename it as “VectorsMatrices.pdf.” To test click test. You should see the cover of “Vectors,
Matrices and C++ Code.”
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1.3.2 The Orientation Matrix

In three dimensions we will always use a unique coordinate system called the global coordinate
system, which is cartesian, orthogonal and right-handed, and has a basis of three mutually perpen-
dicular unit vectors. Everything else is referred to the global system. The global system is assumed
to be inertial, but this is of no consequence here because we are only concerned with kinematics,
not dynamics. We may refer to the global system as G(x, y, z), where G is the origin and x, y and
z are the axes, and to the unit vectors as i, j and k, or as x, y and z.
We will also use many other coordinate systems, all right-handed, cartesian and orthogonal but
generally not coincident with the global system, and each with a basis of three mutually perpen-
dicular unit vectors. Such systems are used for a variety of purposes, for example we can attach
a rigid body to one of them and use it to describe the motion of that body, or we can attach
coordinate systems to rigid bodies at the points where the bodies are articulated with each other
and use them to describe the relative motion of the bodies. These systems can move and rotate
with respect to the global system and with respect to each other. We may refer to one of these
systems as S(u, v, w), where S is the origin and u, v and w are the axes, and to the unit vectors
as u, v and w. We may also refer to the system simply as system S. We will now consider the
relative orientation of two such coordinate systems, F(p, q, t) and S(u, v, w), with unit vectors p, q,
t and u, v, w, respectively, as shown in Figure 1.1.

F

rFS
S

p

q

t

p
q

t
u

vw

u

vw

Figure 1.1: Defining the relative orientation of coordinate systems F(p, q, t)
and S(u, v, w). F stands for First and S for Second.

Our notation intentionally suggests that F is the “first” system and S is the “second” system,
and thus acknowledges a sense of direction for our analysis, without establishing a hierarchy. The
components of the unit vectors u, v, w of system S are given in the F system by the following dot
products:

up = u · p vp = v · p wp = w · p
uq = u · q vq = v · q wq = w · q
ut = u · t vt = v · t wt = w · t

(1.33)
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and finally, using 1.31 to convert a a T , we obtain:

R(a, α) = I + sinα ã + (1 − cosα) ã 2 (1.47)

This equation is known as the Rodriguez formula. It expresses the rotation matrix R in terms of
the axis and angle of rotation. If the components of the axis unit vector a are (a1, a2, a3), matrix
R(a, α) is explicitly given by:

R(a, α) = (1.48)

cosα+ a2
1(1 − cosα) a1a2(1 − cosα) − a3 sinα a1a3(1 − cosα) + a2 sinα

a1a2(1 − cosα) + a3 sinα cosα+ a2
2(1 − cosα) a2a3(1 − cosα) − a1 sinα

a1a3(1 − cosα) − a2 sinα a2a3(1 − cosα) + a1 sinα cosα+ a2
3(1 − cosα)

It is possible to show that matrix R is orthogonal by proving that it satisfies RR T = I. This is
easier to do if one starts from equation 1.46. Equation 1.44 represents yet another application of
an orthogonal matrix, rotating a vector around an axis by a given angle, and equation 1.47 is yet
another way of obtaining a matrix that is orthogonal. We also note that a rotation by angle α
around axis a is the same as a rotation by angle −α around axis −a. Therefore, matrix R must
remain invariant when the signs of both α and a are changed. By inspection of equation 1.48, it is
easy to verify that this is indeed the case.

1.3.4 Orientation Matrix for a Rotated Coordinate System

In the preceding section we have developed a rotation matrix R(a, α), which describes a rigid
rotation by an angle α around an axis defined by a unit vector a. If R(a, α) is multiplied by any
given vector p, the result is the rotated vector q. In this section, we consider a coordinate system
F with unit vectors

p = [1, 0, 0] T

q = [0, 1, 0] T

t = [0, 0, 1] T (1.49)

and we apply the rotation to the entire system. The result is another coordinate system S with
unit vectors u,v,w given by:

u = R(a, α) p = [R11, R21, R31]
T

v = R(a, α) q = [R12, R22, R32]
T

w = R(a, α) t = [R13, R23, R33]
T

(1.50)

where Ri,j are the elements of matrix R(a, α). We note that the components of u, v and w are,
respectively, the three columns of matrix R(a, α). By definition, equation 1.34, the three columns
of the orientation matrix of system S are also de components of u, v and w. Therefore:

AFS,F = R(a, α) (1.51)
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Figure 2.2: Spanning tree for the graph shown in figure 2.1.

• A graph is a set of vertices and edges.
• A subgraph is a graph containing some or all vertices and edges of the original graph.
• A component is a connected subgraph.
• A tree is a component with no closed paths.
• A path is a set of sequential edges.
• A spanning tree is a tree with all the vertices of a component.

2.2.1 Breadth-first Search and Adjacency Level Structures

In the preceding section we have mentioned that a graph G = (V,E) can be partitioned by grouping
the vertices into disjoint subsets. Adjacency level structures, or simply Level structures are a
very important class of partitionings. A level structure L0, L1, . . . , Lm with m+1 levels is obtained
when the subsets are defined in such a way that: C++

Adj(Li) ⊆ Li−1 ∪ Li+1, 0 < i < m (2.4)

Adj(L0) ⊆ L1

Adj(Lm) ⊆ Lm−1

m is the length of the level structure, and the width is defined as the maximum number of vertices
in any level. In a level structure, each level Li, 0 < i < m is a separator of the graph. A separator is
a set of vertices, the removal of which, together with their incident edges, disconnects an otherwise
connected graph or connected component. A level structure is said to be rooted at L0 if L0 ⊂ V is
given and each of the remaining sets is the adjacent of the union of the preceding sets:

Li = Adj




i−1⋃

j=0

Lj


 , i > 0 (2.5)

If L0 is a single vertex u, i.e. L0 = {u}, we say that the level structure is rooted at vertex u. C++
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We begin with the second term in this expression. Differentiating equation 3.46 :

(
∂Tr

∂s

)T

=

(
∂ωFS,S

∂s

)T

JS ωFS,S

n×1 n×3 3×3 3×1

(3.50)

or, using equation 1.21:

(
∂Tr

∂s

)T

=

(
∂ωFS,S

∂s

)T

ω̂FS,S ĴS

n×1 n×3 3×3 3×1

(3.51)

where we have separated JS at the rightmost end of the equation. When JS is given, this expression
can be evaluated in terms of s and ṡ by using the first equation in 3.43. The n× 1 column vector
(∂Tr/∂s)T is a quadratic function of the orientational specific velocities ṡ, and for that reason, with
its sign changed, is considered to be the first of two parts of the quadratic velocity vector. The
second part is defined below.

We now evaluate the first term in equation 3.49. Using the first equation in 3.43, equation 3.46
can be written as follows:

Tr =
1

2
ṡ T GFS,S

T JS GFS,S ṡ

1×1 1×n n×3 3×3 3×n n×1

(3.52)

Differentiating with respect to ṡ:

(
∂Tr

∂ṡ

)T

= GFS,S
T JS GFS,S ṡ

n×1 n×3 3×3 3×n n×1

(3.53)

and differentiating with respect to time:

d

dt

(
∂ Tr

∂ṡ

)T

=
(
ĠFS,S

T JS GFS,S + GFS,S
T JS ĠFS,S

)
ṡ + GFS,S

T JS GFS,S s̈

n×1 n×n n×n n×1 n×n n×1

(3.54)

which can be object-organized with the help of equation 1.21 as follows:

d

dt

(
∂ Tr

∂ṡ

)T

=
[
ĠFS,S

T ̂(GFS,S ṡ) + GFS,S
T ̂
(ĠFS,S ṡ)

]
ĴS + GFS,S

T JS GFS,S s̈

n×1 n×3 n×3 3×1 n×n n×1

(3.55)

The first term on the right is a quadratic function of the orientational specific velocities. This term
is an n× 1 column vector, and, with its sign changed, is the second and last part of the quadratic
velocity vector introduced above. The last term on the right contains the orientational specific
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other. Over the years, Euler angles have been used to study the motion of ships, aircraft, satellites,
planets, rigid bodies, molecules, and atomic particles, just to name some of the most popular
applications. There is more than one way to define Euler angles, and the different definitions are
known as conventions. To create a convention, an initial system x, y, z is postulated, and three
successive rotations are applied to it, by angles ϕ, ϑ and ψ, respectively, resulting in the final
system. The axes taken for the rotations differ, as well as the directions of the rotations, giving
rise to the various conventions. Here, we use only two conventions, the ZXZ convention, and the
ZYX convention.

5.1.2 The ZXZ Convention

In this section we discuss the ZXZ Convention, for Euler angles C++, where the first rotation is
taken about the initial axis +z, causing x and y to move to different positions. 1 The second
rotation is about the new axis +x, causing y and z to move to new positions, and the final rotation
is about the final +z. Hence the name ZXZ we use for this convention. Our ZXZ convention is the
same main convention used by Goldstein [13] and has also been used by Shabana. [14]

O

u0

u1 u2

u3

v0

v1

v2
v3

w0 w1

w2

w3

x

y

z

ϕ

ϕ

ϑ
ϑ

ψ

ψ

Figure 5.1: Definition of Euler angles according to the ZXZ convention.

Figure 5.1 illustrates the four different coordinate systems involved in the transformation, all with
the same origin O but with different orientations, all of them orthogonal, cartesian and right-

1Rotations follow the right-hand rule. A rotation about +z means that the positive direction for measuring
the angle is determined by the fingers of the right hand when the thumb is placed in the direction of the +z
axis. The corkscrew rule is also applicable: the positive direction for the angle is the direction the corkscrew
has to spin in order to advance in the +z direction.
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where we have written AZXZ for A04,0 to identify the ZXZ convention.
The ZXZ convention has a singularity when sin(ϑ) = 0, or ϑ is 0 or π, because ϕ and ψ can
not be told apart. The expression for the orientation matrix, equation 5.6, is correct even at the
singularity. However, the equations of Kinematics also require the converse to be possible, the
ability to calculate the Euler angles from a given orientation matrix. This can not be done at the
singularity, and would be inaccurate near the singularity. Therefore, the ZXZ convention should
not be used at or near the singularity. Strategies to deal with singularities are discussed in Section
5.1.4.
Away from the singularity, the problem of calculating ϕ, ϑ, ψ from the orientation matrix is
overdetermined, because there are more equations than unknowns, but one can always use some of
the equations and ignore the rest, or use the remaining equations for a numerical check of accuracy.
One way to do it is to calculate ψ as tan−1(A31/A32, then obtain sin(ϑ) from either A31 or A32, and
use this value along with A33 to obtain ϑ. Once sin(ϑ) is known, ϕ can be obtained from A13 and
A23. Note that both the sine and cosine of an angle are needed to calculate the angle uniquely.

The Angular Velocity in the ZXZ Convention

Let ϕ, ϑ, ψ be the Euler angles used to specify the orientation of coordinate system S with reference
to coordinate system F, based on the ZXZ convention. As before, F stands for “First” and S for
“Second.” Equation 5.6 can be used to calculate the corresponding orientation matrix AFS,F , which
in turn contains the components of the unit vectors of system S, and thus the orientation of S is
uniquely defined. If the Euler angles are functions of time, then system S is moving relative to F,
and we need an explicit expression for the two G matrices defined in equation 3.43 that will allow
us to calculate the angular velocity introduced in section 3.5 in terms of the time derivatives of the
Euler angles: C++

ωFS,S = GFS,S [ϕ̇, ϑ̇, ψ̇] T

ωFS,F = GFS,F [ϕ̇, ϑ̇, ψ̇] T (5.7)

where the two G matrices are of size 3 × 3 and depend only on ϕ, ϑ and ψ, and [ϕ̇, ϑ̇, ψ̇] T is a
column vector formed from the time derivatives of the Euler angles. Explicit expressions for the
two G matrices are obtained by differentiation of equation 5.6 and substitution of the results in
equations 3.43 and 3.42. The calculations are long but simple, and the results are also very simple:
C++

GFS,S(ZXZ) ≡ Ḡ(ZXZ) =
sin(ϑ) sin(ψ) cos(ψ) 0
sin(ϑ) cos(ψ) − sin(ψ) 0
cos(ϑ) 0 1

(5.8)

GFS,F(ZXZ) ≡ G(ZXZ) =
0 cos(ϕ) sin(ϑ) sin(ϕ)
0 sin(ϕ) − sin(ϑ) cos(ϕ)
1 0 cos(ϑ)

(5.9)
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5.2.2 Angular Velocity

When the Euler parameters are functions of time, system S is moving. To calculate the angular
velocity we follow a procedure similar to the one outlined in section 3.5 and subsequently used in
sections 5.1.2 and 5.1.3. Let

e = [e0, e1, e2, e3]
T (5.27)

be the 4 × 1 column vector of Euler parameters. We seek two relations of the form C++

ωFS,S = GFS,S ė T

ωFS,F = GFS,F ė T (5.28)

similar to equations 3.43, where now the G matrices are of size 3 × 4. As usual, the calculations
are long but straightforward and the results are simple: C++

GFS,S ≡ Ḡ =
−2e1 2e0 2e3 −2e2
−2e2 −2e3 2e0 2e1
−2e3 2e2 −2e1 2e0

(5.29)

GFS,F ≡ G =
−2e1 2e0 −2e3 2e2
−2e2 2e3 2e0 −2e1
−2e3 −2e2 2e1 2e0

(5.30)

The following two relations can be verified by inspection and using equation 5.23:

GFS,S
T GFS,S = 4 I

GFS,F
T GFS,F = 4 I (5.31)

where I is the 3 × 3 identity matrix. Premultiplying the first equation 5.28 by GFS,S
T and the

second by GFS,F
T , the following two equations are obtained:

ė =
1

4
GFS,S ωFS,S

ė =
1

4
GFS,F ωFS,F (5.32)

These equations are used to calculate the time derivatives of the Euler parameters when either
ωFS,S or ωFS,F are given. The two G matrices can be combined with equation 5.24 to create two
4 × 4 matrices BFS,S and BFS,F, also known as B̄ and B, respectively, which have some very useful
properties. They are defined as follows: C++

BFS,S ≡ B̄ =

e0 e1 e2 e3
−e1 e0 e3 −e2
−e2 −e3 e0 e1
−e3 e2 −e1 e0

(5.33)
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7.3.3 EulerAngles Method Detail

public: virtual void EulerAngles::CalculateD2A dfi dfi(double * dAdfidfi)

Calculates the 3×3 matrix ∂2AFS,F/∂ϕ
2 using the current values of the Euler angles and the current

convention, and returns the elements of the resulting matrix by argument in an array, ordered by
rows.
Arguments

• dAdfidfi Upon return, this array will contain the elements of the resulting matrix
ordered by rows.

public: virtual void EulerAngles::CalculateD2A dfi dpsi(double * dAdfidpsi)

Calculates the 3 × 3 matrix ∂2AFS,F/∂ϕ∂ψ using the current values of the Euler angles and the
current convention, and returns the elements of the resulting matrix by argument in an array,
ordered by rows.
Arguments

• dAdfidpsi Upon return, this array will contain the elements of the resulting matrix
ordered by rows.

public: virtual void EulerAngles::CalculateD2A dfi dth(double * dAdfidth)

Calculates the 3 × 3 matrix ∂2AFS,F/∂ϕ∂ϑ using the current values of the Euler angles and the
current convention, and returns the elements of the resulting matrix by argument in an array,
ordered by rows.
Arguments

• dAdfidth Upon return, this array will contain the elements of the resulting matrix
ordered by rows.
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