
//—
—————————————————————–

onents(c
onst Vecto

r3 &

other.co
mponents[0]

;

other.co
mponents[1]

;

= other.co
mponents[2]

;
//SetComponents

//—
—————————————————————–

ecto
r3::A

ngle(
const Vecto

r3 & q){

angle between
this and q (rad

ians, range 0 ¡= angle ¡= pi).

cosa
= DotVecto

r(q);

sina = (Cross
Vecto

r(q)).G
etM

yLength();

alfa
= atan

2(sin
a, cosa

); //ra
nge 0 to pi (becau

se sina ¿= 0).

alfa;

//A
ngle

//—
—————————————————————–

ecto
r3::G

enerat
eArbitrar

yNorm
al()c

onst{

//G
enerat

e an arbitrar
y unit vect

or that is perpendicular to this vect
or in 3D

space.

ecto
r3 mm;

if(fa
bs(co

mponents[0]
) ¡= fabs(co

mponents[1]
) && fabs(co

mponents[0]
) ¡= fabs(co

mponents[2]
))

mm.SetComponents(0
.0, com

ponents[2]
, -com

ponents[1]
);

}
else

if(fa
bs(co

mponents[1]
) ¡= fabs(co

mponents[0]
) && fabs(co

mponents[1]
) ¡= fabs(co

mponen

mm.SetComponents(-c
omponents[2]

, 0.0,
com

ponents[0]
);

}
else{ mm.SetComponents(c

omponents[1]
, -com

ponents[0]
, 0.0)

;

}
mm.MakeM

eUnit();

retu
rn mm;

}

//G
enerat

eArbitrar
yNorm

al

//—
—————————————————————–

Vecto
r3 Vecto

r3::o
perat

or-(
const Vecto

r3 & uu)con
st{

retu
rn Vecto

r3(c
omponents[0]

- uu.com
ponents[0]

, com
ponents[1]

- uu.com
ponents[1]

,

}

//op
erat

or-

//—
—————————————————————–

void
Vecto

r3::M
akeM

eZero(
){

com
ponents[0]

= 0.0;

com
ponents[1]

= 0.0;

com
ponents[2]

= 0.0;

}

//M
akeM

eZero

//—
—————————————————————–

Vecto
r3::D

oubleCross
Vecto

r(co
nst Vecto

r3 & uu)con
st{

me X (me X uu).

com
ponents[0]

* uu.com
ponents[0]

+ com
ponents[1]

* uu.com
p

onents[0]
* com

ponents[0]
+ com

ponents[1]
* com

p

AA); //D
oubleCross

Vecto
r

//—
—————————————————————–

RIGID BODY
KINEMATICS
AND C++ CODE

Professionally typeset
Advanced level.
Hundreds of live crossreferences
Live Index
Live Table of Contents
Live Bibliography
Live Internet links
Live C++ code documentation
Professional C++ code included

Sergio Pissanetzky

Rigid Body Kinematics and C++ Code

Sergio Pissanetzky

2005

Copyright c© 2005 by Sergio Pissanetzky and SciControls.com. All rights reserved. No
part of the contents of this book can be reproduced without the written permission of the
publisher.

Professionally typeset by LATEX. This work is in compliance with the mathematical typeset-
ting conventions established by the International Organization for Standardization (ISO).

Dr. Pissanetzky retired after a rewarding career as an Entrepreneur, Professor, Research Scientist
and Consultant. He was the founder of Magnus Software Corporation, where he focused on develop-
ment of specialized applications for the Magnetic Resonance Imaging (MRI) and the High Energy
Particle Accelerator industries. He has served as Member of the International Editorial Board of
the “International Journal for Computation in Electrical and Electronic Engineering”, as a Member
of the International Advisory Committee of the International Journal “Métodos Numéricos para
Cálculo y Diseño en Ingenieŕıa”, and as a member of the International Committee for Nuclear
Resonance Spectroscopy, Tokyo, Japan. Dr. Pissanetzky has held professorships in Physics at
Texas A&M University and the Universities of Buenos Aires, Córdoba and Cuyo, Argentina. He
has also held positions as a Research Scientist with the Houston Advanced Research Center, as
Chairman of the Computer Center of the Atomic Energy Commission, San Carlos de Bariloche,
Argentina, and as a Scientific Consultant at Brookhaven National Laboratory. Dr. Pissanetzky is
currently a member of the Advisory Board of Meedio, LLC. Dr. Pissanetzky holds several US and
European patents and is the author of two books and numerous peer reviewed technical papers.
Dr. Pissanetzky earned his Ph.D. in Physics at the Balseiro Institute, University of Cuyo, in 1965.
Dr. Pissanetzky has 35 years of teaching experience and 30 years of programming experience in
languages such as Fortran, Basic, C and C++. Dr. Pissanetzky now lives in a quite suburban
neighborhood in Texas.

Website: http://www.SciControls.com

Trademark Notices
Microsoft R©, Windows R© and Visual C++ R© are registered trademarks of Microsoft Corporation.
JavaTM and SunTM are trademarks of Sun Microsystems, Inc.
UNIX R© is a registered trade mark licensed through X/Open Company, Ltd.
PostScript R©, PDF R© and Acrobat Reader R© are registered trademarks of Adobe Systems, Inc.
Merriam-WebsterTMis a trademark of Merriam-Webster, Inc.
VAXTMis a trademark of Digital Equipment Corporation.
Other product and company names mentioned herein may be the trademarks of their respective
owners.

ISBN 0-9762775-1-4

http://www.iso.org
http://www.meedio.com/
http://www.SciControls.com

Contents

Preface xi

Highlights . xi

Introductory Remarks . xi

Instructions . xiv

Acknowledgments . xv

Part I. Theory 1

1 Matrices used in Kinematics 3

1.1 Introduction . 3

1.2 Matrices for Rigid Body Kinematics . 3

1.2.1 Symmetric and Positive Definite Matrices . 3

1.2.2 The Rank of a Matrix . 5

1.2.3 Diagonally Dominant Matrices . 5

1.2.4 Orthogonal Matrices . 6

1.2.5 Diagonal Matrices . 7

1.3 Matrices in 3 Dimensions . 8

1.3.1 3 X 3 Skew-Symmetric Matrices . 8

1.3.2 The Orientation Matrix . 10

1.3.3 Rotating a Vector Around an Axis . 12

1.3.4 Orientation Matrix for a Rotated Coordinate System 14

2 Graphs and Coordinate Systems 17

2.1 Introduction . 17

2.2 Basic Notions of Graph Theory . 18

2.2.1 Breadth-first Search and Adjacency Level Structures 21

2.3 The Coordinate System Graph . 23

2.4 Coordinate Transformations . 25

2.5 Interpolating Orientations . 27

2.6 Spherical Coordinates and Direction . 28

v

vi

2.7 The Bodies and Constraints Graph . 29

3 The Kinematic State 31

3.1 Tensors and Form Invariance of the Laws of Physics 31

3.2 The Kinematic State and the State Variables . 32

3.3 Position and Velocity . 33

3.4 Differentiating the Orientation Matrix . 34

3.5 Angular Velocity . 36

3.6 Specific Coordinates . 39

3.7 Specific Coordinates and State Variables . 40

3.8 Specific Coordinates and the Equations of Motion 42

3.9 Specific Coordinates and Constraints . 46

4 The Rigid Body Model 49

4.1 Propagation in the Coordinate System Graph . 51

4.2 Addition of Kinematic States . 51

4.3 Direct Subtraction of Kinematic States . 53

4.4 Transposed Subtraction of Kinematic States . 54

4.5 Inversion of Kinematic States . 55

5 Orientation Coordinates 57

5.1 Euler Angles . 57

5.1.1 Conventions . 57

5.1.2 The ZXZ Convention . 58

5.1.3 The ZYX Convention . 61

5.1.4 Dealing with Convention Singularities . 64

5.2 Euler Parameters . 64

5.2.1 Orientation Matrix . 65

5.2.2 Angular Velocity . 66

5.3 Axial Rotator . 68

5.3.1 Orientation Matrix . 69

5.3.2 Angular Velocity . 69

5.4 Implementation . 70

Part II. Code Documentation 71

6 C++ Code for Rigid Body Kinematics 73

6.1 All Families . 74

6.2 All Classes . 75

7 Family of Classes: Specific Coordinates 77

vii

7.1 All Specific Coordinates Classes . 78

7.2 Class AxialRotator . 78

7.2.1 AxialRotator Attribute Detail . 81

7.2.2 AxialRotator Constructor Detail . 81

7.2.3 AxialRotator Method Detail . 82

7.3 Class EulerAngles . 90

7.3.1 EulerAngles Attribute Detail . 92

7.3.2 EulerAngles Constructor Detail . 93

7.3.3 EulerAngles Method Detail . 94

7.4 Class EulerAnglesZXZ . 102

7.4.1 EulerAnglesZXZ Constructor Detail . 104

7.4.2 EulerAnglesZXZ Method Detail . 106

7.5 Class EulerAnglesZYX . 113

7.5.1 EulerAnglesZYX Constructor Detail . 115

7.5.2 EulerAnglesZYX Method Detail . 117

7.6 Class EulerParams . 124

7.6.1 EulerParams Constructor Detail . 127

7.6.2 EulerParams Method Detail . 127

7.7 Class Orientator . 137

7.7.1 Orientator Attribute Detail . 140

7.7.2 Orientator Constructor Detail . 140

7.7.3 Orientator Method Detail . 141

7.8 Class Translator . 150

7.8.1 Translator Attribute Detail . 152

7.8.2 Translator Constructor Detail . 152

7.8.3 Translator Method Detail . 153

7.9 Class TranslatorXYZ . 156

7.9.1 TranslatorXYZ Constructor Detail . 157

7.9.2 TranslatorXYZ Method Detail . 157

7.10 Class OrthoMatrix . 159

7.10.1 OrthoMatrix Constructor Detail . 163

7.10.2 OrthoMatrix Method Detail . 166

8 Family of Classes: Graphs 179

8.1 All Graphs Classes . 179

8.2 Class BCComponent . 180

8.2.1 BCComponent Constructor Detail . 181

8.2.2 BCComponent Method Detail . 182

8.3 Class BCEdge . 182

8.3.1 BCEdge Attribute Detail . 183

viii

8.3.2 BCEdge Constructor Detail . 184

8.3.3 BCEdge Method Detail . 184

8.4 Class BCGraph . 186

8.4.1 BCGraph Attribute Detail . 188

8.4.2 BCGraph Constructor Detail . 188

8.4.3 BCGraph Method Detail . 189

8.5 Class BCVertex . 191

8.5.1 BCVertex Attribute Detail . 192

8.5.2 BCVertex Constructor Detail . 192

8.5.3 BCVertex Method Detail . 193

8.6 Class CSEdge . 194

8.6.1 CSEdge Attribute Detail . 198

8.6.2 CSEdge Constructor Detail . 199

8.6.3 CSEdge Method Detail . 200

8.7 Class CSGraph . 211

8.7.1 CSGraph Attribute Detail . 212

8.7.2 CSGraph Constructor Detail . 213

8.7.3 CSGraph Method Detail . 213

8.8 Class CSState . 215

8.8.1 CSState Attribute Detail . 219

8.8.2 CSState Constructor Detail . 220

8.8.3 CSState Method Detail . 220

8.9 Class CSVector . 234

8.9.1 CSVector Attribute Detail . 237

8.9.2 CSVector Constructor Detail . 237

8.9.3 CSVector Method Detail . 239

8.10 Class CSVertex . 251

8.10.1 CSVertex Attribute Detail . 252

8.10.2 CSVertex Constructor Detail . 252

8.10.3 CSVertex Method Detail . 252

8.11 Class PComponent . 253

8.11.1 PComponent Attribute Detail . 255

8.11.2 PComponent Constructor Detail . 256

8.11.3 PComponent Method Detail . 256

8.12 Class PComponentWithTree . 260

8.12.1 PComponentWithTree Attribute Detail . 263

8.12.2 PComponentWithTree Constructor Detail . 265

8.12.3 PComponentWithTree Method Detail . 266

8.13 Class PEdge . 271

8.13.1 PEdge Attribute Detail . 273

ix

8.13.2 PEdge Constructor Detail . 274
8.13.3 PEdge Method Detail . 275

8.14 Class PGraph . 277
8.14.1 PGraph Attribute Detail . 280
8.14.2 PGraph Constructor Detail . 281
8.14.3 PGraph Method Detail . 282

8.15 Class PPath . 289
8.15.1 PPath Attribute Detail . 291
8.15.2 PPath Constructor Detail . 291
8.15.3 PPath Method Detail . 292

8.16 Class PPathClosed . 298
8.16.1 PPathClosed Constructor Detail . 300
8.16.2 PPathClosed Method Detail . 300

8.17 Class PPathOpen . 304
8.17.1 PPathOpen Constructor Detail . 306
8.17.2 PPathOpen Method Detail . 307

8.18 Class PVertex . 313
8.18.1 PVertex Attribute Detail . 314
8.18.2 PVertex Constructor Detail . 315
8.18.3 PVertex Method Detail . 316

9 Family of Classes: Mechanical 319
9.1 All Mechanical Classes . 319
9.2 Class Body . 319

9.2.1 Body Attribute Detail . 324
9.2.2 Body Constructor Detail . 327
9.2.3 Body Method Detail . 327

9.3 Class BodyManager . 337
9.3.1 BodyManager Attribute Detail . 339
9.3.2 BodyManager Constructor Detail . 339
9.3.3 BodyManager Method Detail . 340

Bibliography and Index 345

Preface

Highlights

What makes this book more attractive than others?

• The fact that this work is a textbook containing an in-depth presentation of the principles of
Rigid Body Kinematics.

• The fact that this work is a software release with fully documented source code.
• The fact that the logical objects in the theory are implemented as logical objects in the code.
• The use of a mathematical graph to organize multiple coordinate systems (2.3) and their cor-

responding kinematic states (3.2).
• The introduction of kinematic state operations such as addition, subtraction and inversion (4.2).
• The concept of propagation of mechanical information in the graph (4.1).
• The concept of specific coordinates and the role they play as a mediator between state variables

and generalized coordinates (3.6).
• The handling of the quadratic velocity vector (3.8).
• The direct links from methods and equations in the theory to the code where they are imple-

mented.
• The direct links from code documentation to the theory that supports the code.
• The fact that this work suggests a new standard for the use of logical objects in teaching Science.

Introductory Remarks

This work is a textbook containing an in-depth presentation of the principles of Rigid Body Kine-
matics at an advanced College level. This work is also a software release with fully documented
object-oriented source code and logical objects that correspond to those in the theory and imple-
ment them. The work provides a novel approach where theoretical Classical Mechanics is integrated
with the actual code that supports the computation and brings the logical objects to life.

The theory is covered in Part I, which consists of 5 chapters. The first two chapters introduce
the required mathematical tools. Chapter 1 covers matrices and matrix properties and opera-

xi

xii

tions specific to rigid body kinematics, such as symmetric positive-definite matrices, orthogonal
matrices, the orientation matrix, and skew-symmetric matrices and their relation to vectors and
cross-products. Chapter 2 discusses the use of graphs for organizing the many coordinate systems
used in mechanical problems involving multi-body systems. Subjects covered include graph theory,
coordinate transformations, the interpolation of orientations, and the definitions of the Coordinate
System graph and the Bodies and Constraints graph.

The concept of kinematic state and the definitions of the state variables position, orientation,
velocity, and angular velocity, are introduced in Chapter 3. The discussion includes topics such as
the definition of angular velocity by differentiation of the orientation matrix, and the definition of
the specific coordinates as an intermediary agent between the state variables and the generalized
coordinates. Mathematical expressions that relate the specific coordinates with the state variables,
the equations of motion, and the constraint equations, and the quadratic velocity vector, are
discussed in detail.

Chapter 4 introduces the rigid body model and its extension to multi-body systems. The operations
of addition, direct and transposed subtraction, and inversion of kinematic states are introduced.
The final chapter on theory, Chapter 5, introduces various systems of orientational specific coordi-
nates used in kinematics. Covered are Euler angles, including conventions and singularities, Euler
parameters, and an axial rotator system. The presentation includes the mathematical relations
between the state variables and the specific coordinates of each particular system.

Part I, the theory, contains many direct links from final equations or mathematical methods to
the code where those equations and methods have been implemented. Since the presence of the
links may become a hindrance for a reader who is focused on learning the theory but has no plans
to refer to the code just yet, we have used minimally intrusive, easy to ignore links that look like
C++, and if clicked will take the reader directly to the relevant part. These are a smart links,
they know where to go, they are unimposing, and they allow the reader to easily expand into code
when the need arises. The reader must be aware that there may be more than one implementation
of a mathematical equation or method, such as overloaded versions, versions that use different
arguments, overriden methods in derived classes, “Get” or “Set” methods, etc. The smart links
point to the general area where the implementations are, or, in the case of derived classes, they
point to the base class. Some of the links may point to classes described in previous volumes of
this series.

Part II of the book consists of 4 chapters and covers the documentation for the C++ foundational
implementation of rigid body kinematics. The logical objects defined by the classes implement all
the major equations and methods discussed in the theory. There are a total of 28 classes, including
classes for specific coordinates, graphs, and mechanics. The foundational implementation is general
and extensible. It provides support for all major features and allows extensions such as derived
classes with new functionality to be added as necessary. The code is optimized for efficiency, but

xiii

not at the expense of generality. Production implementations derived from the foundational code
will typically optimize the code for the features they need, at the expense of generality.

Part II, code documentation, contains numerous links to supporting theory, equations and defini-
tions. Code documentation relies very heavily on the theory and contains a very large number of
references. If all those references were colored or underlined, they would be too distracting. For
this reason, silent links have been used in Part II. These links are undistinguishable from regular
text, and therefore cause no distraction. They can be identified only by hovering the cursor over
the text of interest. There are so many silent links, that chances are the link will be there when
needed. Some of the silent links point to classes described in previous volumes of this series.

C++ names used in text are always clearly marked to distinguish them from ordinary words. For
example, Body designates a C++ class that represents a body. The word “body” is used in the
ordinary sense, while Body designates a class or an object of that class.

There is no representation here that C++ is the language of choice for object-oriented programming.
The main reason that C++ was chosen for this work is that the author is an experienced C++
programmer. Other good object-oriented languages exist, but were not considered. C++, of course,
is a powerful programming language and it does offer all the features needed to write a powerful
foundational package. The designers of C++ have made an exceptionally good job, and very few
mistakes. One of them was upholding the C convention for 0-based arrays. Constructs such as
arrays, vectors, matrices and tensors have been used for centuries and the practice of using 1-
based indices is well established. Countless generations of students have been educated in that
understanding. The makers of C++ have ignored the practice, making C++ look somewhat like
a machine-oriented language, not a high-level user-oriented language. Java has followed suit. The
consequences will haunt us for years to come.

Another popular and powerful object-oriented language is Java. It would be easy to translate our
C++ code into Java. The main difficulty for automating the conversion of C++ code to Java
is that C++ programmers frequently use non-object-oriented features such as global variables or
system functions. The code presented here does not, and should be easy to convert. We do not
have plans to do the conversion, however.

Object Logic is a method for modeling reality, for abstracting the complexities of the real world
into simpler, more manageable entities, the Logical Objects. Thought, then, proceeds in terms of
the logical objects. Humans think in terms of objects. Animals do too. They associate properties
and behavior. Birds are not afraid of passing traffic, but if a person came along on the highway,
the birds would fly away. They know that a passing “car” will not “harm” them. They can tell
the car from the person by their properties, and they associate the behavior because they know
the object.

Object methodology helps to organize objects - and thoughts. When used systematically and with

xiv

wisdom, it can help objects and thoughts to fall into their right places, even reconcile differences
between seeming incompatibilities and offer a direction for thinking. One may envisage to apply
these concepts to areas of human knowledge other than science, perhaps a legal system, a govern-
ment system, an organizational chart, a company. The results may teach us a few things. It will
all happen, but the task isn’t easy.

The laws of Physics are already written in terms of logical objects, although this fact is not con-
sistently acknowledged in the literature. The fact may be attributable more to the creativity and
intellectual ability of the authors than to the systematic use of object methodology. The situation
is somewhat similar to what happened with tensors: the laws of Physics were written in terms
of tensors even before the concept of tensor was introduced. The introduction of tensors did not
add to the science, but it helped to organize it. And, indirectly, also to teach it. Similarly, object
methodology will not add to the science, but it will help again to organize it and to teach it.

The use of logic objects in science would also simplify the ever more important interface between
science and computation. It would become possible to create permanent, multi-use computational
objects of general application. The current trend, unfortunately, is to create objects specific to
each application, and such objects are seldom capable of communicating with each other.

The impact of object methodologies in Computer Science has been impressive. As computers and
software engineers alike became more powerful, programs became more and more compliant with
object logic. Just think of the Windows operating system and how it has evolved in the last decade,
from Windows 3.1 to Windows XP. Now, an icon, a file, the desktop, a network connection, just
about anything, is a logical object with properties and behavior. The subject is too vast even to
comment on it. Mathematicians and computer scientists have turned object methodologies into a
science. It is time to start applying this science.

Instructions

The Rigid Body Kinematics software that accompanies this eBook is free. It consists of 45 C++
files (extensions .cpp, .h). If you have purchased this product in the form of a compressed file
(extension .zip), the eBook itself and the source code files are all in the compressed file. If you
have purchased the eBook alone (extension .pdf), then you will need to download the file Rigid-
BodyKinematicsCode.zip, which contains all the C++ files.

In either case, you will also need to download the file VectorMatrix.zip, which contains 29 C++
files corresponding to the first volume of this series, “Vectors, Matrices, and C++ Code.” The
download is free as well.

You can use WinZip to unpack the compressed files. Copy the eBook and the C++ files to the
directory or directories of your choice.

http://www.SciControls.com/eBooks/RigidBodyKinematicsCode.zip
http://www.SciControls.com/eBooks/RigidBodyKinematicsCode.zip
http://www.SciControls.com/eBooks/VectorMatrix.zip
http://www.winzip.com/

xv

The Internet page on frequently asked questions contains the latest information about this eBook
and the corresponding code, including problems encountered after release. This page is a valuable
resource, and it is maintained and updated as needed.

The method ASSERT has been extensively used in code. This method works only with the Microsoft
Visual Studio C++ compiler, and only when compiling a debug version. ASSERT evaluates a logical
condition and stops execution at that line of code if the condition is false, or does nothing if it is
true. When compiling a release version, the compiler ignores all ASSERT . You can leave all ASSERT
if you are using the Microsoft compiler for debugging code, or you can edit them out if you are
using a different compiler or are not interested in debugging.

This eBook is Volume 2 of this series, and contains links to Volume 1 “Vectors, Matrices and C++
Code.” Many of these links point to a course on C++ contained in “Vectors, Matrices and C++
Code.” The course contains many C++ concepts and definitions, very useful for readers who are
not entirely familiar with C++. In order to make these links operational, please locate the pdf file
for “Vectors, Matrices and C++ Code,” copy it to the same directory where this eBook is stored,
and rename it as “VectorsMatrices.pdf.” To test click test. You should see the cover of “Vectors,
Matrices and C++ Code.”

Acknowledgments

The light shines from [13] and [14]. My way is resplendent.

http://www.SciControls.com/eBooks/faqRigidBodyKinematics.htm

10 CHAPTER 1. MATRICES USED IN KINEMATICS

1.3.2 The Orientation Matrix

In three dimensions we will always use a unique coordinate system called the global coordinate
system, which is cartesian, orthogonal and right-handed, and has a basis of three mutually perpen-
dicular unit vectors. Everything else is referred to the global system. The global system is assumed
to be inertial, but this is of no consequence here because we are only concerned with kinematics,
not dynamics. We may refer to the global system as G(x, y, z), where G is the origin and x, y and
z are the axes, and to the unit vectors as i, j and k, or as x, y and z.
We will also use many other coordinate systems, all right-handed, cartesian and orthogonal but
generally not coincident with the global system, and each with a basis of three mutually perpen-
dicular unit vectors. Such systems are used for a variety of purposes, for example we can attach
a rigid body to one of them and use it to describe the motion of that body, or we can attach
coordinate systems to rigid bodies at the points where the bodies are articulated with each other
and use them to describe the relative motion of the bodies. These systems can move and rotate
with respect to the global system and with respect to each other. We may refer to one of these
systems as S(u, v, w), where S is the origin and u, v and w are the axes, and to the unit vectors
as u, v and w. We may also refer to the system simply as system S. We will now consider the
relative orientation of two such coordinate systems, F(p, q, t) and S(u, v, w), with unit vectors p, q,
t and u, v, w, respectively, as shown in Figure 1.1.

F

rFS
S

p

q

t

p
q

t
u

vw

u

vw

Figure 1.1: Defining the relative orientation of coordinate systems F(p, q, t)
and S(u, v, w). F stands for First and S for Second.

Our notation intentionally suggests that F is the “first” system and S is the “second” system,
and thus acknowledges a sense of direction for our analysis, without establishing a hierarchy. The
components of the unit vectors u, v, w of system S are given in the F system by the following dot
products:

up = u · p vp = v · p wp = w · p
uq = u · q vq = v · q wq = w · q
ut = u · t vt = v · t wt = w · t

(1.33)

14 CHAPTER 1. MATRICES USED IN KINEMATICS

and finally, using 1.31 to convert a a T , we obtain:

R(a, α) = I + sinα ã + (1 − cosα) ã 2 (1.47)

This equation is known as the Rodriguez formula. It expresses the rotation matrix R in terms of
the axis and angle of rotation. If the components of the axis unit vector a are (a1, a2, a3), matrix
R(a, α) is explicitly given by:

R(a, α) = (1.48)

cosα+ a2
1(1 − cosα) a1a2(1 − cosα) − a3 sinα a1a3(1 − cosα) + a2 sinα

a1a2(1 − cosα) + a3 sinα cosα+ a2
2(1 − cosα) a2a3(1 − cosα) − a1 sinα

a1a3(1 − cosα) − a2 sinα a2a3(1 − cosα) + a1 sinα cosα+ a2
3(1 − cosα)

It is possible to show that matrix R is orthogonal by proving that it satisfies RR T = I. This is
easier to do if one starts from equation 1.46. Equation 1.44 represents yet another application of
an orthogonal matrix, rotating a vector around an axis by a given angle, and equation 1.47 is yet
another way of obtaining a matrix that is orthogonal. We also note that a rotation by angle α
around axis a is the same as a rotation by angle −α around axis −a. Therefore, matrix R must
remain invariant when the signs of both α and a are changed. By inspection of equation 1.48, it is
easy to verify that this is indeed the case.

1.3.4 Orientation Matrix for a Rotated Coordinate System

In the preceding section we have developed a rotation matrix R(a, α), which describes a rigid
rotation by an angle α around an axis defined by a unit vector a. If R(a, α) is multiplied by any
given vector p, the result is the rotated vector q. In this section, we consider a coordinate system
F with unit vectors

p = [1, 0, 0] T

q = [0, 1, 0] T

t = [0, 0, 1] T (1.49)

and we apply the rotation to the entire system. The result is another coordinate system S with
unit vectors u,v,w given by:

u = R(a, α) p = [R11, R21, R31]
T

v = R(a, α) q = [R12, R22, R32]
T

w = R(a, α) t = [R13, R23, R33]
T

(1.50)

where Ri,j are the elements of matrix R(a, α). We note that the components of u, v and w are,
respectively, the three columns of matrix R(a, α). By definition, equation 1.34, the three columns
of the orientation matrix of system S are also de components of u, v and w. Therefore:

AFS,F = R(a, α) (1.51)

2.2. BASIC NOTIONS OF GRAPH THEORY 21

1

2

3

4

5

6

7

8

9

10

11

Figure 2.2: Spanning tree for the graph shown in figure 2.1.

• A graph is a set of vertices and edges.
• A subgraph is a graph containing some or all vertices and edges of the original graph.
• A component is a connected subgraph.
• A tree is a component with no closed paths.
• A path is a set of sequential edges.
• A spanning tree is a tree with all the vertices of a component.

2.2.1 Breadth-first Search and Adjacency Level Structures

In the preceding section we have mentioned that a graph G = (V,E) can be partitioned by grouping
the vertices into disjoint subsets. Adjacency level structures, or simply Level structures are a
very important class of partitionings. A level structure L0, L1, . . . , Lm with m+1 levels is obtained
when the subsets are defined in such a way that: C++

Adj(Li) ⊆ Li−1 ∪ Li+1, 0 < i < m (2.4)

Adj(L0) ⊆ L1

Adj(Lm) ⊆ Lm−1

m is the length of the level structure, and the width is defined as the maximum number of vertices
in any level. In a level structure, each level Li, 0 < i < m is a separator of the graph. A separator is
a set of vertices, the removal of which, together with their incident edges, disconnects an otherwise
connected graph or connected component. A level structure is said to be rooted at L0 if L0 ⊂ V is
given and each of the remaining sets is the adjacent of the union of the preceding sets:

Li = Adj

i−1⋃

j=0

Lj

 , i > 0 (2.5)

If L0 is a single vertex u, i.e. L0 = {u}, we say that the level structure is rooted at vertex u. C++

44 CHAPTER 3. THE KINEMATIC STATE

We begin with the second term in this expression. Differentiating equation 3.46 :

(
∂Tr

∂s

)T

=

(
∂ωFS,S

∂s

)T

JS ωFS,S

n×1 n×3 3×3 3×1

(3.50)

or, using equation 1.21:

(
∂Tr

∂s

)T

=

(
∂ωFS,S

∂s

)T

ω̂FS,S ĴS

n×1 n×3 3×3 3×1

(3.51)

where we have separated JS at the rightmost end of the equation. When JS is given, this expression
can be evaluated in terms of s and ṡ by using the first equation in 3.43. The n× 1 column vector
(∂Tr/∂s)T is a quadratic function of the orientational specific velocities ṡ, and for that reason, with
its sign changed, is considered to be the first of two parts of the quadratic velocity vector. The
second part is defined below.

We now evaluate the first term in equation 3.49. Using the first equation in 3.43, equation 3.46
can be written as follows:

Tr =
1

2
ṡ T GFS,S

T JS GFS,S ṡ

1×1 1×n n×3 3×3 3×n n×1

(3.52)

Differentiating with respect to ṡ:

(
∂Tr

∂ṡ

)T

= GFS,S
T JS GFS,S ṡ

n×1 n×3 3×3 3×n n×1

(3.53)

and differentiating with respect to time:

d

dt

(
∂ Tr

∂ṡ

)T

=
(
ĠFS,S

T JS GFS,S + GFS,S
T JS ĠFS,S

)
ṡ + GFS,S

T JS GFS,S s̈

n×1 n×n n×n n×1 n×n n×1

(3.54)

which can be object-organized with the help of equation 1.21 as follows:

d

dt

(
∂ Tr

∂ṡ

)T

=
[
ĠFS,S

T ̂(GFS,S ṡ) + GFS,S
T ̂
(ĠFS,S ṡ)

]
ĴS + GFS,S

T JS GFS,S s̈

n×1 n×3 n×3 3×1 n×n n×1

(3.55)

The first term on the right is a quadratic function of the orientational specific velocities. This term
is an n× 1 column vector, and, with its sign changed, is the second and last part of the quadratic
velocity vector introduced above. The last term on the right contains the orientational specific

58 CHAPTER 5. ORIENTATION COORDINATES

other. Over the years, Euler angles have been used to study the motion of ships, aircraft, satellites,
planets, rigid bodies, molecules, and atomic particles, just to name some of the most popular
applications. There is more than one way to define Euler angles, and the different definitions are
known as conventions. To create a convention, an initial system x, y, z is postulated, and three
successive rotations are applied to it, by angles ϕ, ϑ and ψ, respectively, resulting in the final
system. The axes taken for the rotations differ, as well as the directions of the rotations, giving
rise to the various conventions. Here, we use only two conventions, the ZXZ convention, and the
ZYX convention.

5.1.2 The ZXZ Convention

In this section we discuss the ZXZ Convention, for Euler angles C++, where the first rotation is
taken about the initial axis +z, causing x and y to move to different positions. 1 The second
rotation is about the new axis +x, causing y and z to move to new positions, and the final rotation
is about the final +z. Hence the name ZXZ we use for this convention. Our ZXZ convention is the
same main convention used by Goldstein [13] and has also been used by Shabana. [14]

O

u0

u1 u2

u3

v0

v1

v2
v3

w0 w1

w2

w3

x

y

z

ϕ

ϕ

ϑ
ϑ

ψ

ψ

Figure 5.1: Definition of Euler angles according to the ZXZ convention.

Figure 5.1 illustrates the four different coordinate systems involved in the transformation, all with
the same origin O but with different orientations, all of them orthogonal, cartesian and right-

1Rotations follow the right-hand rule. A rotation about +z means that the positive direction for measuring
the angle is determined by the fingers of the right hand when the thumb is placed in the direction of the +z
axis. The corkscrew rule is also applicable: the positive direction for the angle is the direction the corkscrew
has to spin in order to advance in the +z direction.

60 CHAPTER 5. ORIENTATION COORDINATES

where we have written AZXZ for A04,0 to identify the ZXZ convention.
The ZXZ convention has a singularity when sin(ϑ) = 0, or ϑ is 0 or π, because ϕ and ψ can
not be told apart. The expression for the orientation matrix, equation 5.6, is correct even at the
singularity. However, the equations of Kinematics also require the converse to be possible, the
ability to calculate the Euler angles from a given orientation matrix. This can not be done at the
singularity, and would be inaccurate near the singularity. Therefore, the ZXZ convention should
not be used at or near the singularity. Strategies to deal with singularities are discussed in Section
5.1.4.
Away from the singularity, the problem of calculating ϕ, ϑ, ψ from the orientation matrix is
overdetermined, because there are more equations than unknowns, but one can always use some of
the equations and ignore the rest, or use the remaining equations for a numerical check of accuracy.
One way to do it is to calculate ψ as tan−1(A31/A32, then obtain sin(ϑ) from either A31 or A32, and
use this value along with A33 to obtain ϑ. Once sin(ϑ) is known, ϕ can be obtained from A13 and
A23. Note that both the sine and cosine of an angle are needed to calculate the angle uniquely.

The Angular Velocity in the ZXZ Convention

Let ϕ, ϑ, ψ be the Euler angles used to specify the orientation of coordinate system S with reference
to coordinate system F, based on the ZXZ convention. As before, F stands for “First” and S for
“Second.” Equation 5.6 can be used to calculate the corresponding orientation matrix AFS,F , which
in turn contains the components of the unit vectors of system S, and thus the orientation of S is
uniquely defined. If the Euler angles are functions of time, then system S is moving relative to F,
and we need an explicit expression for the two G matrices defined in equation 3.43 that will allow
us to calculate the angular velocity introduced in section 3.5 in terms of the time derivatives of the
Euler angles: C++

ωFS,S = GFS,S [ϕ̇, ϑ̇, ψ̇] T

ωFS,F = GFS,F [ϕ̇, ϑ̇, ψ̇] T (5.7)

where the two G matrices are of size 3 × 3 and depend only on ϕ, ϑ and ψ, and [ϕ̇, ϑ̇, ψ̇] T is a
column vector formed from the time derivatives of the Euler angles. Explicit expressions for the
two G matrices are obtained by differentiation of equation 5.6 and substitution of the results in
equations 3.43 and 3.42. The calculations are long but simple, and the results are also very simple:
C++

GFS,S(ZXZ) ≡ Ḡ(ZXZ) =
sin(ϑ) sin(ψ) cos(ψ) 0
sin(ϑ) cos(ψ) − sin(ψ) 0
cos(ϑ) 0 1

(5.8)

GFS,F(ZXZ) ≡ G(ZXZ) =
0 cos(ϕ) sin(ϑ) sin(ϕ)
0 sin(ϕ) − sin(ϑ) cos(ϕ)
1 0 cos(ϑ)

(5.9)

66 CHAPTER 5. ORIENTATION COORDINATES

5.2.2 Angular Velocity

When the Euler parameters are functions of time, system S is moving. To calculate the angular
velocity we follow a procedure similar to the one outlined in section 3.5 and subsequently used in
sections 5.1.2 and 5.1.3. Let

e = [e0, e1, e2, e3]
T (5.27)

be the 4 × 1 column vector of Euler parameters. We seek two relations of the form C++

ωFS,S = GFS,S ė T

ωFS,F = GFS,F ė T (5.28)

similar to equations 3.43, where now the G matrices are of size 3 × 4. As usual, the calculations
are long but straightforward and the results are simple: C++

GFS,S ≡ Ḡ =
−2e1 2e0 2e3 −2e2
−2e2 −2e3 2e0 2e1
−2e3 2e2 −2e1 2e0

(5.29)

GFS,F ≡ G =
−2e1 2e0 −2e3 2e2
−2e2 2e3 2e0 −2e1
−2e3 −2e2 2e1 2e0

(5.30)

The following two relations can be verified by inspection and using equation 5.23:

GFS,S
T GFS,S = 4 I

GFS,F
T GFS,F = 4 I (5.31)

where I is the 3 × 3 identity matrix. Premultiplying the first equation 5.28 by GFS,S
T and the

second by GFS,F
T , the following two equations are obtained:

ė =
1

4
GFS,S ωFS,S

ė =
1

4
GFS,F ωFS,F (5.32)

These equations are used to calculate the time derivatives of the Euler parameters when either
ωFS,S or ωFS,F are given. The two G matrices can be combined with equation 5.24 to create two
4 × 4 matrices BFS,S and BFS,F, also known as B̄ and B, respectively, which have some very useful
properties. They are defined as follows: C++

BFS,S ≡ B̄ =

e0 e1 e2 e3
−e1 e0 e3 −e2
−e2 −e3 e0 e1
−e3 e2 −e1 e0

(5.33)

94 CHAPTER 7. FAMILY OF CLASSES: SPECIFIC COORDINATES

7.3.3 EulerAngles Method Detail

public: virtual void EulerAngles::CalculateD2A dfi dfi(double * dAdfidfi)

Calculates the 3×3 matrix ∂2AFS,F/∂ϕ
2 using the current values of the Euler angles and the current

convention, and returns the elements of the resulting matrix by argument in an array, ordered by
rows.
Arguments

• dAdfidfi Upon return, this array will contain the elements of the resulting matrix
ordered by rows.

public: virtual void EulerAngles::CalculateD2A dfi dpsi(double * dAdfidpsi)

Calculates the 3 × 3 matrix ∂2AFS,F/∂ϕ∂ψ using the current values of the Euler angles and the
current convention, and returns the elements of the resulting matrix by argument in an array,
ordered by rows.
Arguments

• dAdfidpsi Upon return, this array will contain the elements of the resulting matrix
ordered by rows.

public: virtual void EulerAngles::CalculateD2A dfi dth(double * dAdfidth)

Calculates the 3 × 3 matrix ∂2AFS,F/∂ϕ∂ϑ using the current values of the Euler angles and the
current convention, and returns the elements of the resulting matrix by argument in an array,
ordered by rows.
Arguments

• dAdfidth Upon return, this array will contain the elements of the resulting matrix
ordered by rows.

Index

Acceleration
angular, 36

Accelerations
specific, 39, 45

Addition
of kinematic states, 51

Adjacency level structures, 21
Angular acceleration, 36
Angular motion, 33
Angular velocity, 9, 36

Axial rotator, 69
Euler parameters, 66
ZXZ convention, 60
ZYX convention, 63

Articulated figure, 50
Assignment

of kinematic states, 51
Axes of inertia

principal, 43
Axial rotator, 68

angular velocity, 69
orientation matrix, 69

AxialRotator class, 78
Axis

polar, 28

Bar mathematical accent, 12
BCComponent class, 180
BCEdge class, 182
BCGraph class, 186
BCVertex class, 191
Bibliography, 345
Bodies and Constraints Graph, 29

Body class, 319
BodyManager class, 337
Breadth-first search, 21

Cardinality, 18
Cholesky factorization, 5
Classes

all, 75
AxialRotator, 78
BCComponent, 180
BCEdge, 182
BCGraph, 186
BCVertex, 191
Body, 319
BodyManager, 337
CSEdge, 194
CSGraph, 211
CSState, 215
CSVector, 234
CSVertex, 251
EulerAngles, 90
EulerAnglesZXZ, 102
EulerAnglesZYX, 113
EulerParams, 124
Orientator, 137
OrthoMatrix, 159
PComponent, 253
PComponentWithTree, 260
PEdge, 271
PGraph, 277
PPath, 289
PPathClosed, 298
PPathOpen, 304

347

348 INDEX

Classes (cntd.)

PVertex, 313

Translator, 150

TranslatorXYZ, 156

Class families, 74

Class families for rigid body kinematics, 74

Code for rigid body kinematics, 73

Column vector, 31

Constraint equations, 46

Constraints, 46

Contents, v

Conventions

dealing with singularities, 64

Euler angles, 58

for spherical coordinates, 29

Coordinates

generalized, 45

specific, 39

Coordinate system

global, 10, 23

local, 12, 35

orientation matrix for rotated, 14

Coordinate system graph, 23

propagation, 51

Coordinate systems, 17

Coordinate transformations

relative, 51

Coordinate transformations, 25

Cross-links, 22

CSEdge class, 194

CSGraph class, 211

CSState class, 215

CSVector class, 234

CSVertex class, 251

Cylindrical joint, 40

Decoupling the equations of motion, 43

Degrees of freedom, 32

Depth-first search, 22

Diagonally dominant matrix, 5

Diagonal matrix, 7

Differentiating the orientation matrix, 34

Digraph, 18

Direction, 28

reference, 18, 19

Direction cosines, 11

Displacement motion, 33

Displacement velocity, 34

Dot mathematical accent, 34

Edge

reference direction, 18

undirected, 18

unordered pair, 18

Edges, 18

participating, 51

Enclosing path, 19

shortest, 19

Equations of motion, 42

decoupled, 43

Euler

theorem, 16

Euler angles, 39, 57

angular velocity, 60, 63

conventions, 58

dealing with singularities, 64

implementation, 70

ZXZ convention, 58

ZYX convention, 61

EulerAngles class, 90

EulerAnglesZXZ class, 102

EulerAnglesZYX class, 113

Euler parameters, 39, 64

angular velocity, 66

orientation matrix, 65

EulerParams class, 124

Factorization

Cholesky, 5

Families, 74

INDEX 349

Family of classes

graphs, 179

mechanical, 319

specific coordinates, 77

Figure

articulated, 50

Form invariance, 27

Form invariance

of the laws of Physics, 31

Generalized coordinates, 45

Global coordinate system, 10, 23

Graph, 17, 18

adjacency level structures, 21

adjacent set, 19

adjacent vertices, 19

basic notions, 18

Bodies and Constraints, 29

breadth-first search, 21

clique, 19

component partitioning, 20

connected, 20

connected component, 20

coordinate system, 23

degree of a vertex, 19

depth-first search, 22

diameter, 19

digraph, 18

directed, 18

disconnected, 20

distance, 19

eccentricity, 19

edges, 18

cross-links, 22

tree arcs, 22

incident edge, 19

labeled, 18

level structure, 20, 21

numbered, 18

ordered, 18

partitioning, 20

path, 19

cycle, 19

length, 19

planar, 19

planar embedding, 18

rooted tree, 20

search, 22

section graph, 19

selfedge, 18

separator, 21, 22

spanning forest, 20

spanning tree, 20

subgraph, 19

tree, 20

ancestor, 20

descendant, 20

father, 20

monotone ordering, 20

son, 20

triangulation, 51

undirected, 18

vertex

offspring, 20

pedigree, 20

peripheral, 19

pseudoperipheral, 20

vertices, 18

Graphs

and coordinate systems, 17

classes, 179

family of classes, 179

Graph theory, 17, 18

Hat mathematical accent, 7

Indefinite matrix, 4

Inertia

matrix of, 43

Interpolating orientations, 27

350 INDEX

Invariance
in form, 27

Inversion
of kinematic states, 55

Joint
Cylindrical, 40
planar, 40
spherical, 40

Kinematics
vectors and matrices, 3

Kinematic state, 31, 32
addition, 51
assignment, 51
direct subtraction, 53
inversion, 55
operations, 51
propagation, 51
transposed subtraction, 54

Kinetic energy
rotational, 43, 61, 68

Level structure, 21
length, 21
rooted, 21
rooted at vertex, 21
width, 21

Linear motion, 33
Linear velocity, 34
Line of nodes, 59
Links

silent, xiii
smart, xii

Local coordinate system, 12, 35
Logical objects, xiii

Mathematical accents
bar, 12
dot, 34
hat, 7

tilde, 8, 36

Matrices

used in Kinematics, 3

Matrix

Ȧ, 35

A, 11

alternating, 4

diagonal, 7

diagonally dominant, 5

full rank, 5

Ġ, 42

G, 42

Ḣ, 41

H, 41

indefinite, 4

minor, 4

nondefinite, 4

nullity, 5

of inertia, 43

of moments of inertia, 43

orientation, 10, 11

differentiation, 34

orthogonal, 6

P, 45

positive definite, 4

principal minor, 4

properly diagonally dominant, 6

Q, 45

R, 47

rank, 5

rank deficiency, 5

singular, 5

skew-symmetric, 3, 8

symmetric, 3

triangular factorization, 5

unsymmetric, 3

Mechanical

classes, 319

family of classes, 319

INDEX 351

Model, 49
rigid body, 49

Motion
angular, 33
displacement, 33
linear, 33
rotation, 33
translation, 33

Motion control, 33

Object logic, xiii
Objects

logical, xiii
Operations

with kinematic states, 51
Orientational specific coordinates, 39
Orientation coordinates, 57
Orientation matrix, 10, 11

axial rotator, 69
Euler angles

ZXZ convention, 59
ZYX convention, 62

Euler parameters, 65
for a rotated system, 14
interpolating, 27

Orientator class, 137
Orthogonal matrix, 6
OrthoMatrix class, 159
Orthonormal base, 6

Part I, 1
Participating edges, 51
Part II, 71
Path, 19

closed, 19
enclosing, 19
open, 19
reference direction, 19

PComponent class, 253
PComponentWithTree class, 260
PEdge class, 271

PGraph class, 277
Planar joint, 40
Polar axis, 28
Position, 33
Position vector, 34
Positive definite matrix, 4
PPath class, 289
PPathClosed class, 298
PPathOpen class, 304
Preface, xi
Propagation

of kinematic states, 51
Pseudovector, 8
PVertex class, 313

Quadratic velocity vector, 44, 45

Rank, 5
Relative coordinate transformations, 51
Rigid body kinematics

Class families, 74
Code, 73

Rigid body model, 49
Rodriguez formula, 14
Rotating a vector, 12
Rotational kinetic energy, 43, 61, 68
Rotation motion, 33
Row vector, 31

Section graph, 19
Silent links, xiii
Skew-symmetric matrices, 8
Smart links, xii
Spanning forest, 20
Spanning tree, 20
Specific accelerations, 39, 45
Specific coordinates, 39

and constraints, 46
and state variables, 40
and the equations of motion, 42
classes, 78

352 INDEX

Specific coordinates (cntd.)

family of classes, 77

orientational, 39

translational, 39

Specific velocities, 39

Spherical coordinates, 28

and direction, 28

conventions, 29

Spherical joint, 40

State

kinematic, 32

State variables, 32

and specific coordinates, 40

Subgraph, 19

Subtraction

of kinematic states

direct, 53

transposed, 54

Symmetric matrix, 3

Table of contents, v

Tensor, 31

rank, 31

Tilde mathematical accent, 8, 36

Transformations

coordinate, 25

Translational specific coordinates, 39

Translation motion, 33

Translation velocity, 34

Translator class, 150

TranslatorXYZ class, 156

Tree, 20

ancestor, 20

descendant, 20

father, 20

monotone ordering, 20

older ancestor, 20

rooted, 20

son, 20

spanning, 20

younger ancestor, 20
Tree arcs, 22
Triangulation

graph, 51

Undirected
edge, 18
graph, 18

Variables
state, 32

Vector
column, 31
position, 34
rotating, 12
row, 31
transformation, 32

Vectors
used in Kinematics, 3

Velocities
specific, 39

Velocity, 33, 34
angular, 36
displacement, 34
linear, 34
quadratic vector, 44, 45
translation, 34

Vertices, 18

ZXZ convention
for Euler angles, 58

ZYX convention
for Euler angles, 61

	Preface
	Highlights
	Introductory Remarks
	Instructions
	Acknowledgments

	Part I. Theory
	Matrices used in Kinematics
	Introduction
	Matrices for Rigid Body Kinematics
	Symmetric and Positive Definite Matrices
	The Rank of a Matrix
	Diagonally Dominant Matrices
	Orthogonal Matrices
	Diagonal Matrices

	Matrices in 3 Dimensions
	3 X 3 Skew-Symmetric Matrices
	The Orientation Matrix
	Rotating a Vector Around an Axis
	Orientation Matrix for a Rotated Coordinate System

	Graphs and Coordinate Systems
	Introduction
	Basic Notions of Graph Theory
	Breadth-first Search and Adjacency Level Structures

	The Coordinate System Graph
	Coordinate Transformations
	Interpolating Orientations
	Spherical Coordinates and Direction
	The Bodies and Constraints Graph

	The Kinematic State
	Tensors and Form Invariance of the Laws of Physics
	The Kinematic State and the State Variables
	Position and Velocity
	Differentiating the Orientation Matrix
	Angular Velocity
	Specific Coordinates
	Specific Coordinates and State Variables
	Specific Coordinates and the Equations of Motion
	Specific Coordinates and Constraints

	The Rigid Body Model
	Propagation in the Coordinate System Graph
	Addition of Kinematic States
	Direct Subtraction of Kinematic States
	Transposed Subtraction of Kinematic States
	Inversion of Kinematic States

	Orientation Coordinates
	Euler Angles
	Conventions
	The ZXZ Convention
	The ZYX Convention
	Dealing with Convention Singularities

	Euler Parameters
	Orientation Matrix
	Angular Velocity

	Axial Rotator
	Orientation Matrix
	Angular Velocity

	Implementation

	Part II. Code Documentation
	C++ Code for Rigid Body Kinematics
	All Families
	All Classes

	Family of Classes: Specific Coordinates
	All Specific Coordinates Classes
	Class AxialRotator
	AxialRotator Attribute Detail
	AxialRotator Constructor Detail
	AxialRotator Method Detail

	Class EulerAngles
	EulerAngles Attribute Detail
	EulerAngles Constructor Detail
	EulerAngles Method Detail

	Class EulerAnglesZXZ
	EulerAnglesZXZ Constructor Detail
	EulerAnglesZXZ Method Detail

	Class EulerAnglesZYX
	EulerAnglesZYX Constructor Detail
	EulerAnglesZYX Method Detail

	Class EulerParams
	EulerParams Constructor Detail
	EulerParams Method Detail

	Class Orientator
	Orientator Attribute Detail
	Orientator Constructor Detail
	Orientator Method Detail

	Class Translator
	Translator Attribute Detail
	Translator Constructor Detail
	Translator Method Detail

	Class TranslatorXYZ
	TranslatorXYZ Constructor Detail
	TranslatorXYZ Method Detail

	Class OrthoMatrix
	OrthoMatrix Constructor Detail
	OrthoMatrix Method Detail

	Family of Classes: Graphs
	All Graphs Classes
	Class BCComponent
	BCComponent Constructor Detail
	BCComponent Method Detail

	Class BCEdge
	BCEdge Attribute Detail
	BCEdge Constructor Detail
	BCEdge Method Detail

	Class BCGraph
	BCGraph Attribute Detail
	BCGraph Constructor Detail
	BCGraph Method Detail

	Class BCVertex
	BCVertex Attribute Detail
	BCVertex Constructor Detail
	BCVertex Method Detail

	Class CSEdge
	CSEdge Attribute Detail
	CSEdge Constructor Detail
	CSEdge Method Detail

	Class CSGraph
	CSGraph Attribute Detail
	CSGraph Constructor Detail
	CSGraph Method Detail

	Class CSState
	CSState Attribute Detail
	CSState Constructor Detail
	CSState Method Detail

	Class CSVector
	CSVector Attribute Detail
	CSVector Constructor Detail
	CSVector Method Detail

	Class CSVertex
	CSVertex Attribute Detail
	CSVertex Constructor Detail
	CSVertex Method Detail

	Class PComponent
	PComponent Attribute Detail
	PComponent Constructor Detail
	PComponent Method Detail

	Class PComponentWithTree
	PComponentWithTree Attribute Detail
	PComponentWithTree Constructor Detail
	PComponentWithTree Method Detail

	Class PEdge
	PEdge Attribute Detail
	PEdge Constructor Detail
	PEdge Method Detail

	Class PGraph
	PGraph Attribute Detail
	PGraph Constructor Detail
	PGraph Method Detail

	Class PPath
	PPath Attribute Detail
	PPath Constructor Detail
	PPath Method Detail

	Class PPathClosed
	PPathClosed Constructor Detail
	PPathClosed Method Detail

	Class PPathOpen
	PPathOpen Constructor Detail
	PPathOpen Method Detail

	Class PVertex
	PVertex Attribute Detail
	PVertex Constructor Detail
	PVertex Method Detail

	Family of Classes: Mechanical
	All Mechanical Classes
	Class Body
	Body Attribute Detail
	Body Constructor Detail
	Body Method Detail

	Class BodyManager
	BodyManager Attribute Detail
	BodyManager Constructor Detail
	BodyManager Method Detail

	Bibliography and Index

